Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801001

RESUMO

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Assuntos
Microbiologia , Microbiologia/educação , Humanos , Biotecnologia
2.
Science ; 381(6659): 728-729, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590354

RESUMO

Microbes reshape oil droplets to speed biodegradation.


Assuntos
Alcanivoraceae , Petróleo , Biodegradação Ambiental , Petróleo/metabolismo , Alcanivoraceae/metabolismo
3.
Microorganisms ; 9(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206054

RESUMO

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.

4.
Microorganisms ; 8(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050387

RESUMO

The volatile secondary metabolite, isoprene, is released by trees to the atmosphere in enormous quantities, where it has important effects on air quality and climate. Oil palm trees, one of the highest isoprene emitters, are increasingly dominating agroforestry over large areas of Asia, with associated uncertainties over their effects on climate. Microbes capable of using isoprene as a source of carbon for growth have been identified in soils and in the tree phyllosphere, and most are members of the Actinobacteria. Here, we used DNA stable isotope probing to identify the isoprene-degrading bacteria associated with oil palm leaves and inhabiting the surrounding soil. Among the most abundant isoprene degraders of the leaf-associated community were members of the Sphingomonadales, although no representatives of this order were previously known to degrade isoprene. Informed by these data, we obtained representatives of the most abundant isoprene degraders in enrichments, including Sphingopyxis strain OPL5 (Sphingomonadales), able to grow on isoprene as the sole source of carbon and energy. Sequencing of the genome of strain OPL5, as well as a novel Gordonia strain, confirmed their pathways of isoprene degradation and broadened our knowledge of the genetic and taxonomic diversity of this important bacterial trait.

5.
Front Microbiol ; 11: 1706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765479

RESUMO

In September 2017 the Agia Zoni II sank in the Saronic Gulf, Greece, releasing approximately 500 tonnes of heavy fuel oil, contaminating the Salamina and Athens coastlines. Effects of the spill, and remediation efforts, on sediment microbial communities were quantified over the following 7 months. Five days post-spill, the concentration of measured hydrocarbons within surface sediments of contaminated beaches was 1,093-3,773 µg g-1 dry sediment (91% alkanes and 9% polycyclic aromatic hydrocarbons), but measured hydrocarbons decreased rapidly after extensive clean-up operations. Bacterial genera known to contain oil-degrading species increased in abundance, including Alcanivorax, Cycloclasticus, Oleibacter, Oleiphilus, and Thalassolituus, and the species Marinobacter hydrocarbonoclasticus from approximately 0.02 to >32% (collectively) of the total bacterial community. Abundance of genera with known hydrocarbon-degraders then decreased 1 month after clean-up. However, a legacy effect was observed within the bacterial community, whereby Alcanivorax and Cycloclasticus persisted for several months after the oil spill in formerly contaminated sites. This study is the first to evaluate the effect of the Agia Zoni II oil-spill on microbial communities in an oligotrophic sea, where in situ oil-spill studies are rare. The results aid the advancement of post-spill monitoring models, which can predict the capability of environments to naturally attenuate oil.

6.
Microbiome ; 8(1): 81, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493439

RESUMO

BACKGROUND: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. RESULTS: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome-assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. CONCLUSION: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas. Video abstract.


Assuntos
Biodiversidade , Hemiterpenos , Folhas de Planta , Microbiologia do Solo , Solo , Bactérias/classificação , Bactérias/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Malásia , Folhas de Planta/microbiologia
7.
Microb Biotechnol ; 13(4): 844-887, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32406115

RESUMO

We have recently argued that, because microbes have pervasive - often vital - influences on our lives, and that therefore their roles must be taken into account in many of the decisions we face, society must become microbiology-literate, through the introduction of relevant microbiology topics in school curricula (Timmis et al. 2019. Environ Microbiol 21: 1513-1528). The current coronavirus pandemic is a stark example of why microbiology literacy is such a crucial enabler of informed policy decisions, particularly those involving preparedness of public-health systems for disease outbreaks and pandemics. However, a significant barrier to attaining widespread appreciation of microbial contributions to our well-being and that of the planet is the fact that microbes are seldom visible: most people are only peripherally aware of them, except when they fall ill with an infection. And it is disease, rather than all of the positive activities mediated by microbes, that colours public perception of 'germs' and endows them with their poor image. It is imperative to render microbes visible, to give them life and form for children (and adults), and to counter prevalent misconceptions, through exposure to imagination-capturing images of microbes and examples of their beneficial outputs, accompanied by a balanced narrative. This will engender automatic mental associations between everyday information inputs, as well as visual, olfactory and tactile experiences, on the one hand, and the responsible microbes/microbial communities, on the other hand. Such associations, in turn, will promote awareness of microbes and of the many positive and vital consequences of their actions, and facilitate and encourage incorporation of such consequences into relevant decision-making processes. While teaching microbiology topics in primary and secondary school is key to this objective, a strategic programme to expose children directly and personally to natural and managed microbial processes, and the results of their actions, through carefully planned class excursions to local venues, can be instrumental in bringing microbes to life for children and, collaterally, their families. In order to encourage the embedding of microbiology-centric class excursions in current curricula, we suggest and illustrate here some possibilities relating to the topics of food (a favourite pre-occupation of most children), agriculture (together with horticulture and aquaculture), health and medicine, the environment and biotechnology. And, although not all of the microbially relevant infrastructure will be within reach of schools, there is usually access to a market, local food store, wastewater treatment plant, farm, surface water body, etc., all of which can provide opportunities to explore microbiology in action. If children sometimes consider the present to be mundane, even boring, they are usually excited with both the past and the future so, where possible, visits to local museums (the past) and research institutions advancing knowledge frontiers (the future) are strongly recommended, as is a tapping into the natural enthusiasm of local researchers to leverage the educational value of excursions and virtual excursions. Children are also fascinated by the unknown, so, paradoxically, the invisibility of microbes makes them especially fascinating objects for visualization and exploration. In outlining some of the options for microbiology excursions, providing suggestions for discussion topics and considering their educational value, we strive to extend the vistas of current class excursions and to: (i) inspire teachers and school managers to incorporate more microbiology excursions into curricula; (ii) encourage microbiologists to support school excursions and generally get involved in bringing microbes to life for children; (iii) urge leaders of organizations (biopharma, food industries, universities, etc.) to give school outreach activities a more prominent place in their mission portfolios, and (iv) convey to policymakers the benefits of providing schools with funds, materials and flexibility for educational endeavours beyond the classroom.


Assuntos
Amiloidose , Pré-Albumina , Adulto , Benzoxazóis , Criança , Humanos
8.
Microbiology (Reading) ; 166(7): 600-613, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441612

RESUMO

The climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/genética , Biodegradação Ambiental , Genes Bacterianos , Plantas/microbiologia , Água do Mar/microbiologia , Microbiologia do Solo
9.
Appl Environ Microbiol ; 82(8): 2288-2299, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850299

RESUMO

High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation.


Assuntos
Bactérias/metabolismo , Biota , Fungos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes da Água/metabolismo , Biotransformação
10.
Environ Sci Pollut Res Int ; 22(20): 15230-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25869427

RESUMO

Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Diatomáceas/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo
11.
Microb Biotechnol ; 8(3): 434-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25251384

RESUMO

The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Hidrocarbonetos/metabolismo , Óleos/metabolismo , Água do Mar/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Chrysophyta , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Mar do Norte , Filogenia , Pseudoalteromonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água , Poluentes da Água/metabolismo
12.
Environ Microbiol ; 15(1): 242-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22978606

RESUMO

Coastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.5 cm thick sediment had 7.2 times more cyanobacterial and 1.7 times more diatom rRNA sequences when treated with oil. Photosystem II operating efficiency (Fq'/Fm') was significantly reduced in oiled sediments at day 7, implying that the initial diatom-dominated community was negatively affected by oil, but this was no longer apparent by day 21. Oil addition significantly reduced numbers of the key deposit feeders, and the decreased grazing pressure is likely to be a major factor in the increased abundance of both diatoms and cyanobacteria. By day 5 concentrations of dissolved inorganic nitrogen were significantly lower in oiled mesocosms, likely resulting in the observed increase in nifH-containing, and therefore potentially dinitrogen-fixing, cyanobacteria. Thus, indirect effects of oil, rather than direct inhibition, are primarily responsible for altering the microphytobenthos.


Assuntos
Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio , Poluição por Petróleo , Petróleo , Bactérias/genética , Carga Bacteriana , Cianobactérias/genética , Diatomáceas/genética , Diatomáceas/fisiologia , Sedimentos Geológicos/química , Dados de Sequência Molecular , Oxirredutases/genética , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/análise
13.
Aquat Biosyst ; 8(1): 10, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22591596

RESUMO

The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such "microbial modules" interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.

14.
Environ Microbiol ; 12(9): 2398-410, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20438582

RESUMO

The human gastrointestinal tract microbiota, despite its key roles in health and disease, remains a diverse, variable and poorly understood entity. Current surveys reveal a multitude of undefined bacterial taxa and a low diversity of methanogenic archaea. In an analysis of the microbiota in colonic mucosal biopsies from patients with inflammatory bowel disease we found 16S rDNA sequences representing a phylogenetically rich diversity of halophilic archaea from the Halobacteriaceae (haloarchaea), including novel phylotypes. As the human colon is not considered a salty environment and haloarchaea are described as extreme halophiles, we evaluated and further discarded the possibility that these sequences originated from pre-colonoscopy saline lavage solutions. Furthermore, aerobic enrichment cultures prepared from a patient biopsy at low salinity (2.5% NaCl) yielded haloarchaeal sequence types. Microscopic observation after fluorescence in situ hybridization provided evidence of the presence of viable archaeal cells in these cultures. These results prove the survival of haloarchaea in the digestive system and suggest that they may be members of the mucosal microbiota, even if present in low numbers in comparison with methanogenic archaea. Investigation of a potential physiological basis of this association may lead to new insights into gastrointestinal health and disease.


Assuntos
Halobacteriaceae/isolamento & purificação , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Adulto , Idoso , DNA Arqueal/genética , Fezes/microbiologia , Feminino , Halobacteriaceae/classificação , Halobacteriaceae/genética , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio/análise
15.
FEMS Microbiol Ecol ; 65(3): 526-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18540887

RESUMO

Exposure to pollution exerts strong selective pressure on microbial communities, which may affect their potential to adapt to current or future environmental challenges. In this microcosm study, we used DNA fingerprinting based on 16S rRNA genes to document the impact of high concentrations of benzene on two bacterial communities from a benzene-contaminated aquifer situated below a petrochemical plant (SIReN, UK). The two groundwaters harboured distinct aerobic benzene-degrading communities able to metabolize benzene to below detection levels (1 microg L(-1)). A benzene concentration of 100 mg L(-1) caused a major shift from Betaproteobacteria to Actinobacteria, in particular Arthrobacter spp. A similar shift from Betaproteobacteria to Arthrobacter spp. and Rhodococcus erythropolis was observed in minimal medium (MM) inoculated with a third groundwater. These Gram-positive-dominated communities were able to grow on benzene at concentrations up to 600 mg L(-1) in groundwater and up to 1000 mg L(-1) in MM, concentrations that cause significant solvent stress to cellular systems. Therefore, Gram-positive bacteria were better competitors than Gram-negative organisms under experimental conditions of high benzene loads, which suggests that solvent-tolerant Gram-positive bacteria can play a role in the natural attenuation of benzene or the remediation of contaminated sites.


Assuntos
Benzeno/metabolismo , Bactérias Gram-Positivas/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Aerobiose , Biodegradação Ambiental , Impressões Digitais de DNA , DNA Bacteriano/genética , Ecossistema , Água Doce/microbiologia , Genes Bacterianos , Genes de RNAr , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo , Reino Unido
16.
Environ Microbiol ; 9(6): 1562-71, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17504493

RESUMO

There is little information on how different strategies for the bioremediation of marine oil spills influence the key indigenous hydrocarbon-degrading bacteria (hydrocarbonoclastic bacteria, HCB), and hence their remediation efficacy. Therefore, we have used quantitative polymerase chain reaction to analyse changes in concentrations of HCB in response to intervention strategies applied to experimental microcosms. Biostimulation with nutrients (N and P) produced no measurable increase in either biodegradation or concentration of HCB within the first 5 days, but after 15 days there was a significant increase (29%; P < 0.05) in degradation of n-alkanes, and an increase of one order of magnitude in concentration of Thalassolituus (to 10(7) cells ml(-1)). Rhamnolipid bioemulsifier additions alone had little effect on biodegradation, but, in combination with nutrient additions, provoked a significant increase: 59% (P < 0.05) more n-alkane degradation by 5 days than was achieved with nutrient additions alone. The very low Alcanivorax cell concentrations in the microcosms were hardly influenced by addition of nutrients or bioemulsifier, but strongly increased after their combined addition, reflecting the synergistic action of the two types of biostimulatory agents. Bioaugmentation with Thalassolituus positively influenced hydrocarbon degradation only during the initial 5 days and only of the n-alkane fraction. Bioaugmentation with Alcanivorax was clearly much more effective, resulting in 73% greater degradation of n-alkanes, 59% of branched alkanes, and 28% of polynuclear aromatic hydrocarbons, in the first 5 days than that obtained through nutrient addition alone (P < 0.01). Enhanced degradation due to augmentation with Alcanivorax continued throughout the 30-day period of the experiment. In addition to providing insight into the factors limiting oil biodegradation over time, and the competition and synergism between HCB, these results add weight to the use of bioaugmentation in oil pollution mitigation strategies.


Assuntos
Alcanivoraceae/crescimento & desenvolvimento , Alcanivoraceae/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluentes Ambientais/toxicidade
17.
Environ Microbiol ; 9(1): 165-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17227421

RESUMO

Crude oil is a complex mixture of different hydrocarbons. While diverse bacterial communities can degrade oil, the specific roles of individual members within such communities remain unclear. To identify the key bacterial taxa involved in aerobic degradation of specific hydrocarbons, microcosm experiments were established using seawater from Stanford le Hope, Thames estuary, UK, adjacent to a major oil refinery. In all microcosms, hydrocarbon degradation was significant within 10 weeks, ranging from > 99% of low-molecular-weight alkanes (C(10)-C(18)), 41-84% of high-molecular-weight alkanes (C(20)-C(32)) and pristane, and 32-88% of polycyclic aromatic hydrocarbons (PAHs). Analysis of 16S rRNA sequences from clone libraries and denaturing gradient gel electrophoresis (DGGE) indicated that, except when incubated with fluorene, PAH-degrading communities were dominated by Cycloclasticus. Moreover, PAH-degrading communities were distinct from those in microcosms containing alkanes. Degradation of the branched alkane, pristane, was carried out almost exclusively by Alcanivorax. Bacteria related to Thalassolituus oleivorans (99-100% identity) were the dominant known alkane degraders in n-alkane (C(12)-C(32)) microcosms, while Roseobacter-related bacteria were also consistently found in these microcosms. However, in contrast to previous studies, Thalassolituus, rather than Alcanivorax, was dominant in crude oil-enriched microcosms. The communities in n-decane microcosms differed from those in microcosms supplemented with less volatile alkanes, with a phylogenetically distinct species of Thalassolituus out-competing T. oleivorans. These data suggest that the diversity and importance of the genus Thalassolituus is greater than previously established. Overall, these experiments demonstrate how degradation of different petroleum hydrocarbons is partitioned between different bacterial taxa, which together as a community can remediate petroleum hydrocarbon-impacted estuarine environments.


Assuntos
Ecossistema , Petróleo/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Água do Mar/microbiologia , Biodegradação Ambiental , DNA Ribossômico/genética , Eletroforese/métodos , Hidrocarbonetos Aromáticos/metabolismo , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura , Reino Unido
18.
Environ Microbiol ; 9(1): 177-86, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17227422

RESUMO

Improved strategies for oil-spill remediation will follow a better understanding of the nature, activities and regulating parameters of petroleum hydrocarbon-degrading microbial communities in temperate marine environments. The addition of crude oil to estuarine water resulted in an immediate change in bacterial community structure, increased abundance of hydrocarbon-degrading microorganisms and a rapid rate of oil degradation, suggesting the presence of a pre-adapted oil-degrading microbial community and sufficient supply of nutrients. Relatively rapid degradation was found at 4 degrees C, the lowest temperature tested; and it was temperature rather than nutrient addition that most influenced the community structure. A detailed phylogenetic analysis of oil-degrading microcosms showed that known hydrocarbonoclastic organisms like Thalassolituus and Cycloclasticus, as well as proposed oil degraders like Roseobacter, were present at both 4 degrees C and 20 degrees C, demonstrating the thermo-versatility of such organisms. Clones related to Oleispira antarctica (98% 16S rRNA similarity), a psychrophilic alkane degrader, were dominant in the 4 degrees C oil-degrading community, whereas other clones constituting a different clade and showing 94% similarity 16S rRNA with O. antarctica were found in situ. These findings demonstrate the potential for intrinsic bioremediation throughout the course of the year in temperate estuarine waters, and highlight the importance of both versatile psychrotolerant and specialized psychrophilic hydrocarbon-degrading microbes in effecting this process at low temperatures.


Assuntos
Bactérias/metabolismo , Ecossistema , Petróleo/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Contagem de Colônia Microbiana , DNA Ribossômico/genética , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Temperatura , Poluentes Químicos da Água/metabolismo
19.
FEMS Microbiol Ecol ; 58(2): 260-70, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17064267

RESUMO

A sandstone aquifer beneath a petrochemicals plant (SIReN site, UK) is heterogeneously contaminated with benzene and oxygen-depleted. Despite low redox potentials in three of the most contaminated groundwaters (benzene concentrations from 17.8 to 294 mg L(-1)), we observed aerobic benzene degradation in microcosms, indicating the presence in situ of a latent community of obligate aerobic microorganisms or an active community of facultative aerobes responding rapidly to oxygen ingress. Moreover, benzene degradation occurred at the ambient pH of 8.9 and 9.4, considerably more alkaline conditions than previously reported. 16S rRNA analyses showed that the groundwater microcosm communities were distinct from each other, despite sharing the function of aerobic benzene degradation. From DNA fingerprinting, one consortium was dominated by Acidovorax spp., another by Pseudomonas spp.; these benzene-degrading consortia were similar to the in situ communities, perhaps indicating that these organisms are active in situ and degrading benzene microaerophilically or by denitrification. Conversely, in the third sample, benzene degradation occurred only after the community changed from a Rhodoferax-dominated community to a mix of Rhodococcus and Hydrogenophaga spp. Four of the main benzene-degrading strains were brought into culture: Hydrogenophaga and Pseudomonas spp., and two strains of Rhodococcus erythropolis, a ubiquitous and metabolically versatile organism.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Benzeno/metabolismo , Biodegradação Ambiental , Ecossistema , Microbiologia do Solo , Microbiologia da Água , Aerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Reino Unido
20.
Environ Microbiol ; 7(8): 1192-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16011756

RESUMO

In this study we analysed the relationship between bacterial community structures and geochemistry of groundwater in a sandstone aquifer (SIReN site) impacted mainly by BTEX hydrocarbons (benzene, toluene, ethylbenzene and xylenes), of which benzene is most abundant. The long-term presence of benzene reduced bacterial diversity: in groundwaters contaminated with more than 1.8 x 10(4) microg l(-1) of benzene, bacterial diversity was half of that in clean groundwaters. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA revealed that the community structures were very similar in uncontaminated groundwaters, whereas communities subjected to long-term benzene contamination were different, not only from uncontaminated groundwater communities, but also from each other. Canonical correspondence analysis of the community profiles and the geochemical data showed that this divergence in community structure was not primarily caused by the direct toxic or stressful effects of benzene, but by the environmental changes brought about by benzene metabolism, in particular a decrease in redox potential.


Assuntos
Bactérias/classificação , Benzeno/metabolismo , Ecossistema , Água Doce/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/análise , Análise Multivariada , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA