Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35336938

RESUMO

The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Lipoilação , Glicoproteína da Espícula de Coronavírus
2.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071688

RESUMO

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.

3.
Nanomedicine ; 32: 102325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186695

RESUMO

Respiratory Syncytial Virus (RSV) has been a major health concern globally for decades, yet no effective prophylactic or treatment regimen is available. The key viral proteins responsible for RSV pathology include the fusion protein (F), the immunomodulatory non-structural-protein 1 (NS1) and the phosphoprotein (P) involved in viral replication. Herein, we developed a novel shell-core multifunctional nanosystem with dual payload: a plasmid construct encoding for shRNAs against NS1 and P, and an anti-fusion peptide (HR2D). Anti-ICAM1 antibody conjugated on the nanoparticle (NP) surface is used to target RSV infected cells. Our data show the potential of this nanosystem as a prophylactic and/or a therapeutic regimen against RSV infection. Furthermore, therapy of RSV infected mice with this nanosystem, in addition to reducing viral load, modulated expression of Th2 and allergy-associated cytokines such as IL4, IL-13 and IL-17 indicating a direct role of this nanosystem in the mechanisms involved in the immunoregulation of disease pathogenesis.


Assuntos
Nanopartículas Multifuncionais/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/fisiologia , Animais , Citocinas/metabolismo , Liberação Controlada de Fármacos , Feminino , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos BALB C , Nanopartículas Multifuncionais/ultraestrutura , Peptídeos/farmacologia , Plasmídeos/genética , RNA Interferente Pequeno/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Transfecção , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA