Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762178

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Invasividade Neoplásica , Paxilina/metabolismo , Paxilina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tensinas/metabolismo , Tensinas/genética
2.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38260312

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete, but abnormally activated in a wide variety of tumors. The CTA, Testis specific serine kinase 6 (TSSK6), is essential for male fertility in mice. Functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage independent growth, invasion and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.

3.
J Biol Chem ; 299(11): 105348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838177

RESUMO

Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias/genética
4.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778501

RESUMO

Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.

5.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990599

RESUMO

Cancer testis antigens (CTAs) are proteins whose expression is normally restricted to the testis but anomalously activated in human cancer. In sperm, a number of CTAs support energy generation, however, whether they contribute to tumor metabolism is not understood. We describe human COX6B2, a component of cytochrome c oxidase (complex IV). COX6B2 is expressed in human lung adenocarcinoma (LUAD) and expression correlates with reduced survival time. COX6B2, but not its somatic isoform COX6B1, enhances activity of complex IV, increasing oxidative phosphorylation (OXPHOS) and NAD+ generation. Consequently, COX6B2-expressing cancer cells display a proliferative advantage, particularly in low oxygen. Conversely, depletion of COX6B2 attenuates OXPHOS and collapses mitochondrial membrane potential leading to cell death or senescence. COX6B2 is both necessary and sufficient for growth of human tumor xenografts in mice. Our findings reveal a previously unappreciated, tumor-specific metabolic pathway hijacked from one of the most ATP-intensive processes in the animal kingdom: sperm motility.


Assuntos
Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Neoplasias Pulmonares/genética , Fosforilação Oxidativa , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus
6.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515734

RESUMO

Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor ß (TGFß)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Smad3/metabolismo , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transdução de Sinais , Proteína Smad3/genética , Neoplasias de Mama Triplo Negativas/genética
7.
Mol Cell Biol ; 39(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036566

RESUMO

Ewing sarcoma is characterized by a pathognomonic chromosomal translocation that generates the EWSR1-FLI1 chimeric transcription factor. The transcriptional targets of EWSR1-FLI1 that are essential for tumorigenicity are incompletely defined. Here, we found that EWSR1-FLI1 modulates the expression of cancer/testis (CT) antigen genes, whose expression is biased to the testes but is also activated in cancer. Among these CT antigens, fetal and adult testis expressed 1 (FATE1) is most robustly induced. EWSR1-FLI1 associates with the GGAA repeats in the proximal promoter of FATE1, which exhibits accessible chromatin exclusively in mesenchymal progenitor cells (MPCs) and Ewing sarcoma cells. Expression of EWSR1-FLI1 in non-Ewing sarcoma cells and in MPCs enhances FATE1 mRNA and protein expression. Conversely, depletion of EWSR1-FLI1 in Ewing sarcoma cells leads to a loss of FATE1 expression. Importantly, we found that FATE1 is required for survival and anchorage-independent growth in Ewing sarcoma cells via attenuating the accumulation of BNIP3L, a BH3-only protein that is toxic when stabilized. This action appears to be mediated by the E3 ligase RNF183. We propose that engaging FATE1 function can permit the bypass of cell death mechanisms that would otherwise inhibit tumor progression.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Fatores de Transcrição/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Sarcoma de Ewing/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Cancer Res ; 78(21): 6196-6208, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30185546

RESUMO

Cancer testis antigens (CTA) are expressed in testis and placenta and anomalously activated in a variety of tumors. The mechanistic contribution of CTAs to neoplastic phenotypes remains largely unknown. Using a chemigenomics approach, we find that the CTA HORMAD1 correlates with resistance to the mitochondrial complex I inhibitor piericidin A in non-small cell lung cancer (NSCLC). Resistance was due to a reductive intracellular environment that attenuated the accumulation of free radicals. In human lung adenocarcinoma (LUAD) tumors, patients expressing high HORMAD1 exhibited elevated mutational burden and reduced survival. HORMAD1 tumors were enriched for genes essential for homologous recombination (HR), and HORMAD1 promoted RAD51-filament formation, but not DNA resection, during HR. Accordingly, HORMAD1 loss enhanced sensitivity to γ-irradiation and PARP inhibition, and HORMAD1 depletion significantly reduced tumor growth in vivo These results suggest that HORMAD1 expression specifies a novel subtype of LUAD, which has adapted to mitigate DNA damage. In this setting, HORMAD1 could represent a direct target for intervention to enhance sensitivity to DNA-damaging agents or as an immunotherapeutic target in patients.Significance: This study uses a chemigenomics approach to demonstrate that anomalous expression of the CTA HORMAD1 specifies resistance to oxidative stress and promotes HR to support tumor cell survival in NSCLC. Cancer Res; 78(21); 6196-208. ©2018 AACR.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/diagnóstico , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Feminino , Radicais Livres , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Mutagênicos , Transplante de Neoplasias , Estresse Oxidativo , Prognóstico , Recombinação Genética
9.
Mol Endocrinol ; 29(8): 1114-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26168033

RESUMO

The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic ß-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic ß-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.


Assuntos
Aminoácidos/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Células Secretoras de Insulina/citologia , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Neurônios/metabolismo , Multimerização Proteica
10.
Mol Endocrinol ; 29(2): 274-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496032

RESUMO

Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1ß. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic ß-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation.


Assuntos
Células Secretoras de Insulina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Histona Desacetilases/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Clin Invest ; 124(9): 4093-101, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25133424

RESUMO

Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic ß cells for people with diabetes and for targeting menin-sensitive endocrine tumors.


Assuntos
Ilhotas Pancreáticas/citologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas ras/fisiologia , Adulto , Animais , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Proteínas Supressoras de Tumor/fisiologia
12.
J Biol Chem ; 289(20): 14370-9, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24695728

RESUMO

We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic ß cells. Amino acids are unable to activate ERK1/2 in ß cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic ß cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in ß cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in ß cells as a mechanism to compensate for amino acid deficiency.


Assuntos
Aminoácidos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Carbacol/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Receptor Muscarínico M3/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
J Biol Chem ; 286(2): 1025-36, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21059644

RESUMO

Cytokines contribute to pancreatic islet inflammation, leading to impaired glucose homeostasis and diabetic diseases. A plethora of data shows that proinflammatory cytokines are produced in pancreatic islets by infiltrating mononuclear immune cells. Here, we show that pancreatic islet α cells and ß cells express tumor necrosis factor-α (TNF-α) and other cytokines capable of promoting islet inflammation when exposed to interleukin-1ß (IL-1ß). Cytokine expression by ß cells was dependent on calcineurin (CN)/nuclear factor of activated T cells (NFAT) and MAPK signaling. NFAT associated with the TNF-α promoter in response to stimuli and synergistically activated promoter activity with ATF2 and c-Jun. In contrast, the ß-cell-specific transcriptional activator MafA could repress NFAT-mediated TNF-α gene expression whenever C/EBP-ß was bound to the promoter. NFAT differentially regulated the TNF-α gene depending upon the expression and MAPK-dependent activation of interacting basic leucine zipper partners in ß cells. Both p38 and JNK were required for induction of TNF-α mRNA and protein expression. Collectively, the data show that glucose and IL-1ß can activate signaling pathways, which control induction and repression of cytokines in pancreatic endocrine cells. Thus, by these mechanisms, pancreatic ß cells themselves may contribute to islet inflammation and their own immunological destruction in the pathogenesis of diabetes.


Assuntos
Calcineurina/imunologia , Células Secretoras de Glucagon/imunologia , Células Secretoras de Insulina/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Fatores de Transcrição NFATC/imunologia , Fator de Necrose Tumoral alfa/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Calcineurina/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células Secretoras de Glucagon/metabolismo , Ácido Glucárico/farmacologia , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cell Res ; 18(4): 436-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18347614

RESUMO

MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.


Assuntos
Doença , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Diabetes Mellitus/enzimologia , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/enzimologia , Doenças Renais Policísticas/enzimologia
15.
Proc Natl Acad Sci U S A ; 104(28): 11518-25, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17615236

RESUMO

CHOP-10 (GADD153/DDIT-3) is a bZIP protein involved in differentiation and apoptosis. Its expression is induced in response to stresses such as nutrient deprivation, perturbation of the endoplasmic reticulum, redox imbalance, and UV exposure. Here we show that CHOP expression is induced in cultured pancreatic beta-cells maintained in a basal glucose concentration of 5.5 mM and repressed by stimulatory glucose (>or=11 mM). Both induction and repression of CHOP are dependent on the MAPKs ERK1 and ERK2. Two regulatory composite sites containing overlapping MafA response elements (MARE) and CAAT enhancer binding (CEB) elements regulate transcription in an ERK1/2-dependent manner. One site (MARE-CEB), from -320 to -300 bp in the promoter, represses transcription. The other site (CEB-MARE), from +2,628 to +2,641 bp in the first intron of the CHOP gene, activates it. MafA can influence transcription of both sites. The MARE-CEB is repressed by MafA, whereas the CEB-MARE site, which is homologous to the A2C1 component of the glucose-sensitive RIPE3b region of the insulin gene promoter, is activated by MafA. These results indicate that ERK1/2 have dual roles in regulating CHOP gene expression via both promoter and intronic regions, depending on environmental and metabolic stresses imposed on pancreatic beta-cells.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Transcrição CHOP/biossíntese , Fator de Transcrição CHOP/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fatores de Transcrição Maf Maior/fisiologia , Regiões Promotoras Genéticas , Ratos
16.
Diabetes ; 55(4): 1066-73, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16567530

RESUMO

Glucose sensing is essential for the ability of pancreatic beta-cells to produce insulin in sufficient quantities to maintain blood glucose within the normal range. Stress causes the release of adrenergic hormones that increase circulating glucose by promoting glucose production and inhibiting insulin release. We have shown that extracellular signal-regulated kinases 1 and 2 (ERK1/2) are responsive to glucose in pancreatic beta-cells and that glucose activates ERK1/2 by mechanisms independent of insulin. Here we show that glucose-induced activation of ERK1/2 is inhibited by epinephrine through the alpha2-adrenergic receptor. Epinephrine and the selective alpha2-adrenergic agonist UK14304 reduced insulin secretion and glucose-stimulated ERK1/2 activation in a pertussis toxin-sensitive manner, implicating the alpha subunit of a Gi family member. Alpha2-adrenergic agonists also reduced stimulation of ERK1/2 by glucagon-like peptide 1 and KCl, but not by phorbol ester or nerve growth factor. Our findings suggest that alpha2-adrenergic agonists act via a Gi family member on early steps in ERK1/2 activation, supporting the idea that ERK1/2 are regulated in a manner that reflects insulin demand.


Assuntos
Epinefrina/farmacologia , Glucose/farmacologia , Ilhotas Pancreáticas/enzimologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Linhagem Celular , AMP Cíclico/farmacologia , Ativação Enzimática , Ilhotas Pancreáticas/efeitos dos fármacos , Cinética , Toxina Pertussis/farmacologia , Ratos
17.
J Biol Chem ; 280(29): 26751-9, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15899886

RESUMO

The insulin promoter is both positively and negatively regulated in response to conditions to which pancreatic beta-cells are exposed. Exposure of intact rat islets and INS-1 pancreatic beta-cells to 11 mm glucose for minutes to hours results in an enhancement in the rate of insulin gene transcription assessed with a reporter linked to the insulin gene promoter. In contrast, chronic exposure of rat islets or beta-cells to 11 mm glucose results in loss of the glucose responsiveness of the insulin gene promoter. By 48 h, glucose inhibits insulin gene promoter activity. Here we show that not only the acute effect of elevated glucose to stimulate the insulin gene promoter but also the chronic effect of elevated glucose to inhibit the insulin gene promoter depend on ERK1/2 mitogen-activated protein kinase activity. In examining the underlying mechanism, we found that acute exposure to 11 mm glucose resulted in the binding of the transcription factors NFAT and Maf to the glucose-responsive A2C1 element of the insulin gene promoter. An NFAT and C/EBP-beta complex was observed in cells chronically exposed to 11 mm glucose. Formation of NFAT-Maf and NFAT-C/EBP-beta complexes was sensitive to inhibitors of ERK1/2 and calcineurin, consistent with our previous finding that activation of ERK1/2 by glucose required calcineurin activity and the well documented regulation of NFAT by calcineurin. These results indicate that the ERK1/2 pathway modulates partners of NFAT, which may either stimulate or repress insulin gene transcription during stimulatory and chronic exposure to elevated glucose.


Assuntos
Glucose/farmacologia , Insulina/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição NFATC , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-maf , Ratos
18.
Cell Biochem Biophys ; 40(3 Suppl): 191-200, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15289654

RESUMO

We discuss our work examining regulation and functions of mitogen-activated protein kinases, particularly ERK1 and ERK2, in pancreatic beta-cells. These enzymes are activated by glucose, other nutrients, and insulinogenic hormones. Their activation by these agents is calcium-dependent. A number of other stimuli also activate ERK1/2, but by mechanisms distinct from those involved in nutrient sensing. Inhibition of ERK1/2 has no apparent effect on insulin secretion measured after 2 h. On the other hand, ERK1/2 activity is required for maximal glucose-dependent activation of the insulin gene promoter. The primary effort has focused on INS-1 cell lines, with supporting and confirmatory studies in intact islets and other beta-cell lines, indicating the generality of our findings in beta-cell function. Thus ERK1/2 participate in transmitting glucose-sensing information to beta-cell functions. These kinases most likely act directly and indirectly on multiple pathways that regulate beta-cell function and, in particular, to transduce an elevated glucose signal into insulin gene transcription.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Ésteres de Forbol/farmacologia , Ratos , Fatores de Tempo , Transcrição Gênica
19.
J Biol Chem ; 278(35): 32517-25, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12783880

RESUMO

We showed previously that ERK1/2 were activated by glucose and amino acids in pancreatic beta cells. Here we examine and compare signaling events that are necessary for ERK1/2 activation by glucose and other stimuli in beta cells. We find that agents that interrupt Ca2+ signaling by a variety of mechanisms interfere with glucose- and glucagon-like peptide (GLP-1)-stimulated ERK1/2 activity. In particular, calmodulin antagonists, FK506, and cyclosporin, immunosuppressants that inhibit the calcium-dependent phosphatase calcineurin, suppress ERK1/2 activation by both glucose and GLP-1. Ca2+ signaling from intracellular stores is also essential for ERK1/2 activation, because thapsigargin blocks ERK1/2 activation by glucose or GLP-1. The glucose-sensitive mechanism is distinct from that used by phorbol ester or insulin to stimulate ERK1/2 but shares common features with that used by GLP-1.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hormônios Peptídicos/metabolismo , Adenoviridae/genética , Androstadienos/farmacologia , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Ciclosporina/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Imunossupressores/farmacologia , Insulina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Modelos Biológicos , Ratos , Transdução de Sinais , Tacrolimo/farmacologia , Tapsigargina/farmacologia , Fatores de Tempo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA