RESUMO
PURPOSE: Total scalp irradiation (TSI) is used to treat malignancies of the scalp and face, including angiosarcomas, nonmelanoma skin cancers, and cutaneous lymphomas. Owing to the irregularity of the scalp contour and the presence of underlying critical organs at risk (OARs), radiation planning is challenging and technically difficult. To address these complexities, several different radiation therapy techniques have been used. These include the combined lateral photon-electron technique (3DRT), intensity-modulated radiation therapy (IMRT)/volumetric arc therapy (VMAT), helical tomotherapy (HT), and mold-based high-dose-rate brachytherapy (HDR BT). However, the use of proton radiation therapy (PRT) has never been documented. MATERIALS AND METHODS: A 71-year-old, immunosuppressed man presented with recurrent nonmelanoma skin cancer of the scalp. He was successfully treated at our center with PRT to deliver TSI. A comparative VMAT treatment plan was generated and dose to critical OARs was compared. RESULTS: We present the first clinical case report of PRT for TSI and dosimetric comparison to a VMAT plan. The PRT and VMAT plans provided equivalent target volume coverage; however, the PRT plan significantly reduced dose to the brain, hippocampi, and optical apparatus. CONCLUSION: TSI planned with PRT is relatively straightforward from a planning perspective and does not require a bolus. It also has the potential to decrease radiation therapy-related toxicity. However, PRT is relatively expensive and not universally available. The uncertainty surrounding the end-range of the proton beam is a consideration. Although there are potential disadvantages to using PRT for TSI, its use should be considered by treating radiation oncologists and referring physicians.
RESUMO
Radiation therapy is a frequently used modality for the treatment of solid cancers. Although the mechanisms of cell kill are similar for all forms of radiation, the in vivo properties of photon and proton beams differ greatly and maybe exploited to optimize clinical outcomes. In particular, proton particles lose energy in a predictable manner as they pass through the body. This property is used clinically to control the depth at which the proton beam is terminated, and to limit radiation dose beyond the target region. This strategy can allow for substantial reductions in radiation dose to normal tissues located just beyond a tumor target. However, the degradation of proton energy in the body remains highly sensitive to tissue density. As a consequence, any changes in tissue density during the course of treatment may significantly alter proton dosimetry. Such changes may occur through alterations in body weight, respiration, or bowel filling/gas, and may result in unfavorable dose deposition. In this manuscript, we provide a detailed method for the delivery of proton therapy using both passive scatter and pencil beam scanning techniques for prostate cancer. Although the described procedure directly pertains to prostate cancer patients, the method may be adapted and applied for the treatment of virtually all solid tumors. Our aim is to equip readers with a better understanding of proton therapy delivery and outcomes in order to facilitate the appropriate integration of this modality during cancer therapy.