Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 157(12): 2687-2696, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649266

RESUMO

The neural substrates and mechanisms mediating the antinociceptive effects of the endogenous bioactive lipid, N-palmitoylethanolamide (PEA), require further investigation. We investigated the effects of exogenous PEA administration into the anterior cingulate cortex (ACC), an important brain region linked with cognitive and affective modulation of pain, on formalin-evoked nociceptive behaviour in rats. Potential involvement of peroxisome proliferator-activated receptor isoforms (PPAR) α and γ or endocannabinoid-mediated entourage effects at cannabinoid1 (CB1) receptors or transient receptor potential subfamily V member 1 (TRPV1) in mediating the effects of PEA was also investigated. Intra-ACC administration of PEA significantly attenuated the first and early second phases of formalin-evoked nociceptive behaviour. This effect was attenuated by the CB1 receptor antagonist AM251, but not by the PPARα antagonist GW6471, the PPARγ antagonist GW9662, or the TRPV1 antagonist 5'-iodo resiniferatoxin. All antagonists, administered alone, significantly reduced formalin-evoked nociceptive behaviour, suggesting facilitatory/permissive roles for these receptors in the ACC in inflammatory pain. Post-mortem tissue analysis revealed a strong trend for increased levels of the endocannabinoid anandamide in the ACC of rats that received intra-ACC PEA. Expression of c-Fos, a marker of neuronal activity, was significantly reduced in the basolateral nucleus of the amygdala, but not in the central nucleus of the amygdala, the rostral ventromedial medulla or the dorsal horn of the spinal cord. In conclusion, these data indicate that PEA in the ACC can reduce inflammatory pain-related behaviour, possibly via AEA-induced activation of CB1 receptors and associated modulation of neuronal activity in the basolateral amygdala.


Assuntos
Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Giro do Cíngulo/efeitos dos fármacos , Dor/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Amidas , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/uso terapêutico , Estudos de Coortes , Modelos Animais de Doenças , Diterpenos/uso terapêutico , Fixadores/toxicidade , Formaldeído/toxicidade , Giro do Cíngulo/fisiologia , Locomoção/efeitos dos fármacos , Masculino , Microdissecção , Microinjeções , PPAR gama/administração & dosagem , Dor/induzido quimicamente , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética
2.
Scand J Pain ; 10: 61-73, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-28361775

RESUMO

BACKGROUND AND AIMS: Although neuropathic pain is known to negatively affect cognition, the neural mechanisms involved are poorly understood. Chronic pain is associated with changes in synaptic plasticity in the brain which may impact on cognitive functioning. The aim of this study was to model neuropathic pain in mid-aged rats using spinal nerve ligation (SNL). Following establishment of allodynia and hyperalgesia, behaviour was assessed in a battery of cognitive tests. Expression of the presynaptic protein, synaptophysin, and its colocalisation with the vesicular GABA and glutamate transporters (vGAT and vGLUT, respectively), was investigated in the medial prefrontal cortex (mPFC) and hippocampus. METHODS: Nine month old male Sprague Dawley rats underwent L5-L6 spinal nerve ligation or a sham procedure. Mechanical and cold allodynia and thermal hyperalgesia were assessed using von Frey, acetone and Hargreaves tests, respectively. Cognition was assessed in the novel-object recognition, air-puff passive avoidance and Morris water maze behavioural tasks. Immunohistochemistry was used to examine the expression of synaptophysin in the mPFC and CA1 region of the hippocampus and double labelling of synaptophysin and the vesicular transporters vGAT and vGlut was used to investigate the distribution of synaptophysin on GABAergic and glutamatergic neurons. RESULTS: SNL rats displayed impaired performance in the novel-object recognition task. Passive-avoidance responding, and spatial learning and memory in the Morris water maze, were unaffected by SNL surgery. However, in the water maze reversal task, pain-related impairments were evident during training and probe trials. SNL surgery was not associated with any differences in the expression of synaptophysin or its colocalisation with vGAT or vGLUT in the mPFC or the hippocampal CA1 region. CONCLUSIONS: These results suggest that the SNL model of neuropathic pain is associated with deficits in recognition memory and cognitive flexibility, but these deficits are not associated with altered synaptophysin expression or distribution in the mPFC and CA1. IMPLICATIONS: Cognitive complaints are common amongst chronic pain patients. Here we modelled cognitive impairment in a well-established animal model of neuropathic pain and investigated the neural mechanisms involved. A better understanding of this phenomenon is an important prerequisite for the development of improved treatment of patients affected.


Assuntos
Cognição , Hiperalgesia , Neuralgia/psicologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Nervos Espinhais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA