Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(4): 1365-1367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103410

RESUMO

Macroautophagy/autophagy occurs basally under nutrient-rich conditions in most mammalian cells, contributing to protein and organelle quality control, and protection against aging and neurodegeneration. During autophagy, lysosomes are heavily utilized via their fusion with autophagosomes and must be repopulated to maintain autophagic degradative capacity. During starvation-induced autophagy, lysosomes are generated via de novo biogenesis under the control of TFEB (transcription factor EB), or by the recycling of autolysosome membranes via autophagic lysosome reformation (ALR). However, these lysosome repopulation processes do not operate under nutrient-rich conditions. In our recent study, we identify a sequential phosphoinositide conversion pathway that enables lysosome repopulation under nutrient-rich conditions to facilitate basal autophagy. Phosphatidylinositol-3,4-bisphosphate (PtdIns[3,4]P2) signals generated downstream of phosphoinositide 3-kinase alpha (PI3Kα) during growth factor stimulation are converted to phosphatidylinositol-3-phosphate (PtdIns3P) on endosomes by INPP4B (inositol polyphosphate-4-phosphatase type II B). We show that PtdIns3P is retained as endosomes mature into endolysosomes, and serves as a substrate for PIKFYVE (phosphoinositide kinase, FYVE-type zinc finger containing) to generate phosphatidylinositol-3,5-bisphosphate (PtdIns[3,5]P2) to promote SNX2-dependent lysosome reformation, basal autophagic flux and protein aggregate degradation. Therefore, endosome maturation couples nutrient signaling to lysosome repopulation during basal autophagy by delivering PI3Kα-derived PtdIns3P to endolysosomes for PtdIns(3,5)P2-dependent lysosome reformation.Abbreviations: ALR: autophagic lysosome reformation; INPP4B: inositol polyphosphate-4-phosphatase type II B; PI3Kα: phosphoinositide 3-kinase alpha; PIKFYVE: phosphoinositide kinase FYVE-type zinc finger containing; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,4)P2: phosphatidylinositol-3,4-bisphosphate; PtdIns(3,5)P2 phosphatidylinositol-3,5-bisphosphate; SNX2 sorting nexin 2; PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3.


Assuntos
Autofagia , Fosfatidilinositóis , Animais , Fosfatidilinositóis/metabolismo , Autofagia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Lisossomos/metabolismo , Endossomos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Nutrientes , Fosfatidilinositol 3-Quinase/metabolismo , Polifosfatos/metabolismo , Inositol/metabolismo , Mamíferos/metabolismo
2.
EMBO J ; 41(19): e110398, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35968799

RESUMO

Autophagy depends on the repopulation of lysosomes to degrade intracellular components and recycle nutrients. How cells co-ordinate lysosome repopulation during basal autophagy, which occurs constitutively under nutrient-rich conditions, is unknown. Here, we identify an endosome-dependent phosphoinositide pathway that links PI3Kα signaling to lysosome repopulation during basal autophagy. We show that PI3Kα-derived PI(3)P generated by INPP4B on late endosomes was required for basal but not starvation-induced autophagic degradation. PI(3)P signals were maintained as late endosomes matured into endolysosomes, and served as the substrate for the 5-kinase, PIKfyve, to generate PI(3,5)P2 . The SNX-BAR protein, SNX2, was recruited to endolysosomes by PI(3,5)P2 and promoted lysosome reformation. Inhibition of INPP4B/PIKfyve-dependent lysosome reformation reduced autophagic clearance of protein aggregates during proteotoxic stress leading to increased cytotoxicity. Therefore under nutrient-rich conditions, PI3Kα, INPP4B, and PIKfyve sequentially contribute to basal autophagic degradation and protection from proteotoxic stress via PI(3,5)P2 -dependent lysosome reformation from endolysosomes. These findings reveal that endosome maturation couples PI3Kα signaling to lysosome reformation during basal autophagy.


Assuntos
Fosfatidilinositol 3-Quinases , Agregados Proteicos , Autofagia/fisiologia , Endossomos/metabolismo , Lisossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas/metabolismo
3.
Autophagy ; 17(5): 1287-1289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33879025

RESUMO

Autophagic lysosome reformation (ALR) recycles autolysosome membranes formed during autophagy, to make lysosomes and is essential for continued autophagy function. Localized membrane remodeling on autolysosomes leads to the extension of reformation tubules, which undergo scission to form new lysosomes. The phosphoinositides phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2) induce this remodeling by recruiting protein effectors to membranes. We identified the inositol polyphosphate 5-phosphatase INPP5K, which converts PtdIns(4,5)P2 to PtdIns4P is essential for ALR in skeletal muscle. INPP5K mutations that reduce its 5-phosphatase activity are known to cause muscular dystrophy, via an undefined mechanism. We generated skeletal muscle-specific inpp5k knockout mice which exhibited severe muscle disease, with lysosome depletion and marked autophagy inhibition. This was due to decreased PtdIns4P and increased PtdIns(4,5)P2 on autolysosomes, causing reduced scission of reformation tubules. ALR was restored in cells with loss of INPP5K by expression of wild-type INPP5K, but not muscle-disease causing mutants. Therefore on autolysosomes, both PtdIns(4,5)P2 generation and its removal by INPP5K is required for completion of ALR. Furthermore, skeletal muscle shows a dependence on the membrane recycling ALR pathway to maintain lysosome homeostasis and ensure the protective role of autophagy against disease.


Assuntos
Autofagia , Fosfatidilinositóis , Animais , Lisossomos , Camundongos , Músculo Esquelético , Fosfatos de Fosfatidilinositol
4.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33119550

RESUMO

The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k-/- muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k-/- myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k-/- muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.


Assuntos
Autofagia , Lisossomos/metabolismo , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Lisossomos/genética , Lisossomos/patologia , Camundongos , Camundongos Knockout , Doenças Musculares/genética , Doenças Musculares/patologia , Mioblastos Esqueléticos/patologia , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
5.
Dev Cell ; 54(1): 75-91.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32485139

RESUMO

Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion. Depletion of caveolin-1 (CAV1) increased steady-state tensile stresses in epithelial monolayers. As a result, loss of CAV1 in the epithelial cells surrounding oncogene-expressing cells prevented their apical extrusion. Epithelial tension in CAV1-depleted monolayers was increased by cortical contractility at adherens junctions. This reflected a signaling pathway, where elevated levels of phosphoinositide-4,5-bisphosphate (PtdIns(4,5)P2) recruited the formin, FMNL2, to promote F-actin bundling. Steady-state monolayer tension and oncogenic extrusion were restored to CAV1-depleted monolayers when tension was corrected by depleting FMNL2, blocking PtdIns(4,5)P2, or disabling the interaction between FMNL2 and PtdIns(4,5)P2. Thus, caveolae can regulate active mechanical tension for epithelial homeostasis by controlling lipid signaling to the actin cytoskeleton.


Assuntos
Cavéolas/metabolismo , Células Epiteliais/metabolismo , Proteínas Oncogênicas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CACO-2 , Caveolina 1/metabolismo , Células Epiteliais/ultraestrutura , Forminas/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Oncogênicas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estresse Mecânico
6.
Hum Mol Genet ; 29(1): 31-48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625572

RESUMO

Polycystic kidney disease (PKD) results in the formation of renal cysts that can impair function leading to renal failure. DNA damage accumulates in renal epithelial cells in PKD, but the molecular mechanisms are unclear and are investigated here. Phosphoinositide 3-kinase (PI3K)/AKT signaling activates mammalian target of rapamycin complex 1 (mTORC1) and hyperactivation of mTORC1 is a common event in PKD; however, mTORC1 inhibitors have yielded disappointing results in clinical trials. Here, we demonstrate AKT and mTORC1 hyperactivation in two representative murine PKD models (renal epithelial-specific Inpp5e knockout and collecting duct-specific Pkd1 deletion) and identify a downstream signaling network that contributes to DNA damage accumulation. Inpp5e- and Pkd1-null renal epithelial cells showed DNA damage including double-stranded DNA breaks associated with increased replication fork numbers, multinucleation and centrosome amplification. mTORC1 activated CAD, which promotes de novo pyrimidine synthesis, to sustain cell proliferation. AKT, but not mTORC1, inhibited the DNA repair/replication fork origin firing regulator TOPBP1, which impacts on DNA damage and cell proliferation. Notably, Inpp5e- and Pkd1-null renal epithelial cell spheroid formation defects were rescued by AKT inhibition. These data reveal that AKT hyperactivation contributes to DNA damage accumulation in multiple forms of PKD and cooperates with mTORC1 to promote cell proliferation. Hyperactivation of AKT may play a causal role in PKD by regulating DNA damage and cell proliferation, independent of mTORC1, and AKT inhibition may be a novel therapeutic approach for PKD.


Assuntos
Dano ao DNA/fisiologia , Doenças Renais Policísticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Dano ao DNA/genética , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Renais Policísticas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Cancer Res ; 73(16): 5066-79, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23801747

RESUMO

It is now clear that progression from localized prostate cancer to incurable castrate-resistant prostate cancer (CRPC) is driven by continued androgen receptor (AR), signaling independently of androgen. Thus, there remains a strong rationale to suppress AR activity as the single most important therapeutic goal in CRPC treatment. Although the expression of ligand-independent AR splice variants confers resistance to AR-targeted therapy and progression to lethal castrate-resistant cancer, the molecular regulators of AR activity in CRPC remain unclear, in particular those pathways that potentiate the function of mutant AR in CRPC. Here, we identify FHL2 as a novel coactivator of ligand-independent AR variants that are important in CRPC. We show that the nuclear localization of FHL2 and coactivation of the AR is driven by calpain cleavage of the cytoskeletal protein filamin, a pathway that shows differential activation in prostate epithelial versus prostate cancer cell lines. We further identify a novel FHL2-AR-filamin transcription complex, revealing how deregulation of this axis promotes the constitutive, ligand-independent activation of AR variants, which are present in CRPC. Critically, the calpain-cleaved filamin fragment and FHL2 are present in the nucleus only in CRPC and not benign prostate tissue or localized prostate cancer. Thus, our work provides mechanistic insight into the enhanced AR activation, most notably of the recently identified AR variants, including AR-V7 that drives CRPC progression. Furthermore, our results identify the first disease-specific mechanism for deregulation of FHL2 nuclear localization during cancer progression. These results offer general import beyond prostate cancer, given that nuclear FHL2 is characteristic of other human cancers where oncogenic transcription factors that drive disease are activated like the AR in prostate cancer.


Assuntos
Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Células COS , Calpaína/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Filaminas/genética , Filaminas/metabolismo , Humanos , Ligantes , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Ativação Transcricional
8.
Hum Mol Genet ; 21(14): 3237-54, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22523091

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. HCM is caused by mutations in sarcomeric genes, but in >40% of patients, the mutation is not yet identified. We hypothesized that FHL1, encoding four-and-a-half-LIM domains 1, could be another disease gene since it has been shown to cause distinct myopathies, sometimes associated with cardiomyopathy. We evaluated 121 HCM patients, devoid of a mutation in known disease genes. We identified three novel variants in FHL1 (c.134delA/K45Sfs, c.459C>A/C153X and c.827G>C/C276S). Whereas the c.459C>A variant was associated with muscle weakness in some patients, the c.134delA and c.827G>C variants were associated with isolated HCM. Gene transfer of the latter variants in C2C12 myoblasts and cardiac myocytes revealed reduced levels of FHL1 mutant proteins, which could be rescued by proteasome inhibition. Contractility measurements after adeno-associated virus transduction in rat-engineered heart tissue (EHT) showed: (i) higher and lower forces of contraction with K45Sfs and C276S, respectively, and (ii) prolonged contraction and relaxation with both mutants. All mutants except one activated the fetal hypertrophic gene program in EHT. In conclusion, this study provides evidence for FHL1 to be a novel gene for isolated HCM. These data, together with previous findings of proteasome impairment in HCM, suggest that FHL1 mutant proteins may act as poison peptides, leading to hypertrophy, diastolic dysfunction and/or altered contractility, all features of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Adolescente , Adulto , Idoso , Animais , Cardiomiopatia Hipertrófica/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Criança , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Linhagem , Adulto Jovem
9.
J Biol Chem ; 281(11): 7666-83, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16407297

RESUMO

Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced "sac-like" myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Musculares/fisiologia , Miosinas/química , Sarcômeros/metabolismo , Actomiosina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos/química , Peptídeos/química , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transfecção , Técnicas do Sistema de Duplo-Híbrido
10.
J Biol Chem ; 278(13): 11376-85, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12536145

RESUMO

SKIP (skeletal muscle and kidney enriched inositol phosphatase) is a recently identified phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylinositol 4,5-bisphosphate-specific 5-phosphatase. In this study, we investigated the intracellular localization of SKIP. Indirect immunofluorescence and subcellular fractionation showed that, in serum-starved cells, both endogenous and recombinant SKIP colocalized with markers of the endoplasmic reticulum (ER). Following epidermal growth factor (EGF) stimulation, SKIP transiently translocated to plasma membrane ruffles and colocalized with submembranous actin. Data base searching demonstrated a novel 128-amino acid domain in the C terminus of SKIP, designated SKICH for SKIP carboxyl homology, which is also found in the 107-kDa 5-phosphatase PIPP and in members of the TRAF6-binding protein family. Recombinant SKIP lacking the SKICH domain localized to the ER, but did not translocate to membrane ruffles following EGF stimulation. The SKIP SKICH domain showed perinuclear localization and mediated EGF-stimulated plasma membrane ruffle localization. The SKICH domain of the 5-phosphatase PIPP also mediated plasma membrane ruffle localization. Mutational analysis identified the core sequence within the SKICH domain that mediated constitutive membrane association and C-terminal sequences unique to SKIP that contributed to ER localization. Collectively, these studies demonstrate a novel membrane-targeting domain that serves to recruit SKIP and PIPP to membrane ruffles.


Assuntos
Retículo Endoplasmático/enzimologia , Fator de Crescimento Epidérmico/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/enzimologia , Meios de Cultura Livres de Soro , Imunofluorescência , Humanos , Hidrólise , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA