Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(1): 219-227, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28001367

RESUMO

Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.


Assuntos
Alcenos/química , Hidroxiprolina/química , Peptídeos/química , Pró-Colágeno-Prolina Dioxigenase/química , Prolina/química , Prolil Hidroxilases/química , Alcenos/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Humanos , Hidroxilação , Hidroxiprolina/metabolismo , Isomerismo , Cinética , Modelos Químicos , Estrutura Molecular , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolina/metabolismo , Prolil Hidroxilases/metabolismo , Ligação Proteica , Especificidade da Espécie , Especificidade por Substrato
2.
Bioconjug Chem ; 24(9): 1634-44, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23924245

RESUMO

Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simultaneously release yeast surface-displayed proteins and selectively conjugate with chemical functionalities compatible with EPL and click chemistry. Single-chain antibodies (scFv) and green fluorescent protein (GFP) were displayed on the yeast surface as fusions to the N-terminus of the Mxe GyrA intein. ScFv and GFP were released from the yeast surface with either a sulfur nucleophile (MESNA) or a nitrogen nucleophile (hydrazine) linked to an azido group. The hydrazine azide permitted the simultaneous release and azido functionalization of displayed proteins, but nonspecific reactions with other yeast proteins were detected, and cleavage efficiency was limited. In contrast, MESNA released significantly more protein from the yeast surface while also generating a unique thioester at the carboxy-terminus of the released protein. These protein thioesters were subsequently reacted with a cysteine alkyne in an EPL reaction and then employed in an azide-alkyne cycloaddition to immobilize the scFv and GFP on an azide-decorated surface with >90% site-specificity. Importantly, the immobilized proteins retained their activity. Since yeast surface display is also a protein engineering platform, these approaches provide a particularly powerful tool for the rapid assessment of engineered proteins.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Imobilizadas/química , Inteínas , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/genética , Anticorpos de Cadeia Única/química , Alcinos/química , Azidas/química , Química Click , Proteínas de Fluorescência Verde/genética , Proteínas Imobilizadas/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/química , Anticorpos de Cadeia Única/genética
3.
ACS Med Chem Lett ; 3(4): 268-272, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22611478

RESUMO

Cancer chemotherapeutic agents often have a narrow therapeutic index that challenges the maintenance of a safe and effective dose. Consistent plasma concentrations of a drug can be obtained by using a timed-release prodrug strategy. We reasoned that a ribonucleoside 3'-phosphate could serve as a pro-moiety that also increases the hydrophilicity of a cancer chemotherapeutic agent. Herein, we report an efficient route for the synthesis of the prodrug uridine 3'-(4-hydroxytamoxifen phosphate) (UpHT). UpHT demonstrates timed-released activation kinetics with a half-life of approximately 4 h at the approximate plasma concentration of human pancreatic ribonuclease (RNase 1). MCF-7 breast cancer cells treated with UpHT showed decreased proliferation upon co-incubation with RNase 1, consistent with the release of the active drug-4-hydroxytamoxifen. These data demonstrate the utility of a human plasma enzyme as a useful activator of a prodrug.

4.
Acc Chem Res ; 44(9): 752-61, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21639109

RESUMO

A critical source of insight into biological function is derived from the chemist's ability to create new covalent bonds between molecules, whether they are endogenous or exogenous to a biological system. A daunting impediment to selective bond formation, however, is the myriad of reactive functionalities present in biological milieu. The high reactivity of the most abundant molecule in biology, water, makes the challenges all the more difficult. We have met these challenges by exploiting the reactivity of sulfur and selenium in acyl transfer reactions. The reactivity of both sulfur and selenium is high compared with that of their chalcogen congener, oxygen. In this Account, we highlight recent developments in this arena, emphasizing contributions from our laboratory. One focus of our research is furthering the chemistry of native chemical ligation (NCL) and expressed protein ligation (EPL), two related processes that enable the synthesis and semisynthesis of proteins. These techniques exploit the lower pK(a) of thiols and selenols relative to alcohols. Although a deprotonated hydroxyl group in the side chain of a serine residue is exceedingly rare in a biological context, the pK(a) values of the thiol in cysteine (8.5) and of the selenol in selenocysteine (5.7) often render these side chains anionic under physiological conditions. NCL and EPL take advantage of the high nucleophilicity of the thiolate as well as its utility as a leaving group, and we have expanded the scope of these methods to include selenocysteine. Although the genetic code limits the components of natural proteins to 20 or so α-amino acids, NCL and EPL enable the semisynthetic incorporation of a limitless variety of nonnatural modules into proteins. These modules are enabling chemical biologists to interrogate protein structure and function with unprecedented precision. We are also pursuing the further development of the traceless Staudinger ligation, through which a phosphinothioester and azide form an amide. We first reported this chemical ligation method, which leaves no residual atoms in the product, in 2000. Our progress in effecting the reaction in water, without an organic cosolvent, was an important step in the expansion of its utility. Moreover, we have developed the traceless Staudinger reaction as a means for immobilizing proteins on a solid support, providing a general method of fabricating microarrays that display proteins in a uniform orientation. Along with NCL and EPL, the traceless Staudinger ligation has made proteins more readily accessible targets for chemical synthesis and semisynthesis. The underlying acyl transfer reactions with sulfur and selenium provide an efficient means to synthesize, remodel, and immobilize proteins, and they have enabled us to interrogate biological systems.


Assuntos
Selênio/química , Enxofre/química , Concentração de Íons de Hidrogênio , Fosfinas/química , Proteínas/química , Proteínas/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA