Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428793

RESUMO

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum. Praziquantel (PZQ) is the method of choice for treatment. Due to constant selection pressure, there is an urgent need for new therapies for schistosomiasis. Previous treatment of S. mansoni included the use of oxamniquine (OXA), a drug that is activated by a schistosome sulfotransferase (SULT). Guided by data from X-ray crystallography and Schistosoma killing assays more than 350 OXA derivatives were designed, synthesized, and tested. We were able to identify CIDD-0150610 and CIDD-0150303 as potent derivatives in vitro that kill (100%) of all three Schistosoma species at a final concentration of 71.5 µM. We evaluated the efficacy of the best OXA derivates in an in vivo model after treatment with a single dose of 100 mg/kg by oral gavage. The highest rate of worm burden reduction was achieved by CIDD -150303 (81.8%) against S. mansoni, CIDD-0149830 (80.2%) against S. haematobium and CIDD-066790 (86.7%) against S. japonicum. We have also evaluated the ability of the derivatives to kill immature stages since PZQ does not kill immature schistosomes. CIDD-0150303 demonstrated (100%) killing for all life stages at a final concentration of 143 µM in vitro and effective reduction in worm burden in vivo against S. mansoni. To understand how OXA derivatives fit in the SULT binding pocket, X-ray crystal structures of CIDD-0150303 and CIDD-0150610 demonstrate that the SULT active site will accommodate further modifications to our most active compounds as we fine tune them to increase favorable pharmacokinetic properties. Treatment with a single dose of 100 mg/kg by oral gavage with co-dose of PZQ + CIDD-0150303 reduced the worm burden of PZQ resistant parasites in an animal model by 90.8%. Therefore, we conclude that CIDD-0150303, CIDD-0149830 and CIDD-066790 are novel drugs that overcome some of PZQ limitations, and CIDD-0150303 can be used with PZQ in combination therapy.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/química , Oxamniquine/farmacologia , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Schistosoma mansoni , Terapia Combinada , Doenças Negligenciadas/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
2.
Mol Cancer Ther ; 22(11): 1248-1260, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493258

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERß) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERß agonist to promote its antitumor action is limiting the therapeutic promise of ERß. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERß agonists. Because of its high activity in ERß reporter assays, specific binding to ERß in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERß than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 µmol/L, while having little to no effect on ERß-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERß target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERß agonist, offering patients with GBM a potential means of improving survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/patologia , Receptor beta de Estrogênio/genética , Linhagem Celular Tumoral , Encéfalo/metabolismo , Estrogênios , Neoplasias Encefálicas/patologia
3.
Front Physiol ; 13: 969000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187775

RESUMO

Oral cancer patients have a poor prognosis, with approximately 66% of patients surviving 5-years after diagnosis. Treatments for oral cancer are limited and have many adverse side effects; thus, further studies are needed to develop drugs that are more efficacious. To achieve this objective, we developed CIDD-99, which produces cytotoxic effects in multiple oral squamous cell carcinoma (OSCC) cell lines. While we demonstrated that CIDD-99 induces ER stress and apoptosis in OSCC, the mechanism was unclear. Investigation of the Bcl-family of proteins showed that OSCC cells treated with CIDD-99 undergo downregulation of Bcl-XL and Bcl-2 anti-apoptotic proteins and upregulation of Bax (pro-apoptotic). Importantly, OSCC cells treated with CIDD-99 displayed decreased calcium signaling in a dose and time-dependent manner, suggesting that blockage of calcium signaling is the key mechanism that induces cell death in OSCC. Indeed, CIDD-99 anti-proliferative effects were reversed by the addition of exogenous calcium. Moreover, electrophysiological properties further established that calcium entry was via the non-selective TRPC1 channel and prolonged CIDD-99 incubation inhibited STIM1 expression. CIDD-99 inhibition of calcium signaling also led to ER stress and inhibited mitochondrial complexes II and V in vitro. Taken together, these findings suggest that inhibition of TRPC mediates induction of ER stress and mitochondrial dysfunction as a part of the cellular response to CIDD-99 in OSCC.

4.
Toxins (Basel) ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203879

RESUMO

Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.


Assuntos
Antineoplásicos Hormonais/farmacologia , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Tamoxifeno/farmacologia , Endossomos/efeitos dos fármacos , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos
5.
Int J Parasitol Drugs Drug Resist ; 16: 140-147, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111649

RESUMO

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory. Previously used therapies include oxamniquine (OXA), but shortcomings such as drug resistance and affordability resulted in discontinuation. Employing a genetic, biochemical and molecular approach, a sulfotransferase (SULT-OR) was identified as responsible for OXA drug resistance. By crystallizing SmSULT- OR with OXA, the mode of action of OXA was determined. This information allowed a rational approach to novel drug design. Our team approach with schistosome biologists, medicinal chemists, structural biologists and geneticists has enabled us to develop and test novel drug derivatives of OXA to treat this disease. Using an iterative process for drug development, we have successfully identified derivatives that are effective against all three species of the parasite. One derivative CIDD-0149830 kills 100% of all three human schistosome species within 5 days. The goal is to generate a second therapeutic with a different mode of action that can be used in conjunction with praziquantel to overcome the ever-growing threat of resistance and improve efficacy. The ability and need to design, screen, and develop future, affordable therapeutics to treat human schistosomiasis is critical for successful control program outcomes.


Assuntos
Descoberta de Drogas , Esquistossomose , Animais , Humanos , Oxamniquine , Praziquantel/farmacologia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico
6.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593898

RESUMO

Tethered photoswitches are molecules with two photo-dependent isomeric forms, each with different actions on their biological targets. They include reactive chemical groups capable of covalently binding to their target. Our aim was to develop a ß-subunit-tethered propofol photoswitch (MAP20), as a tool to better study the mechanism of anesthesia through the GABAA α1ß3γ2 receptor. We used short spacers between the tether (methanethiosulfonate), the photosensitive moiety (azobenzene), and the ligand (propofol), to allow a precise tethering adjacent to the putative propofol binding site at the ß+α- interface of the receptor transmembrane helices (TMs). First, we used molecular modeling to identify possible tethering sites in ß3TM3 and α1TM1, and then introduced cysteines in the candidate positions. Two mutant subunits [ß3(M283C) and α1(V227C)] showed photomodulation of GABA responses after incubation with MAP20 and illumination with lights at specific wavelengths. The α1ß3(M283C)γ2 receptor showed the greatest photomodulation, which decreased as GABA concentration increased. The location of the mutations that produced photomodulation confirmed that the propofol binding site is located in the ß+α- interface close to the extracellular side of the transmembrane helices. Tethering the photoswitch to cysteines introduced in the positions homologous to ß3M283 in two other subunits (α1W288 and γ2L298) also produced photomodulation, which was not entirely reversible, probably reflecting the different nature of each interface. The results are in agreement with a binding site in the ß+α- interface for the anesthetic propofol.


Assuntos
Anestésicos Intravenosos/farmacologia , Membrana Celular/metabolismo , Luz , Oócitos/metabolismo , Propofol/farmacologia , Receptores de GABA-A/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos da radiação , Humanos , Oócitos/efeitos dos fármacos , Oócitos/efeitos da radiação , Conformação Proteica , Domínios Proteicos , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/efeitos da radiação , Xenopus laevis , Ácido gama-Aminobutírico
7.
Mol Biochem Parasitol ; 236: 111257, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027942

RESUMO

Hycanthone (HYC) is a retired drug formerly used to treat schistosomiasis caused by infection from Schistosoma mansoni and S. haematobium. Resistance to HYC was first observed in S. mansoni laboratory strains and in patients in the 1970s and the use of this drug was subsequently discontinued with the substitution of praziquantel (PZQ) as the single antischistosomal drug in the worldwide formulary. In endemic regions, multiple organizations have partnered with the World Health Organization to deliver PZQ for morbidity control and prevention. While the monotherapy reduces the disease burden, additional drugs are needed to use in combination with PZQ to stay ahead of potential drug resistance. HYC will not be reintroduced into the schistosomiasis drug formulary as a combination drug because it was shown to have adverse properties including mutagenic, teratogenic and carcinogenic activities. Oxamniquine (OXA) was used to treat S. mansoni infection in Brazil during the brief period of HYC use, until the 1990s. Its antischistosomal efficacy has been shown to work through the same mechanism as HYC and it does not possess the undesirable properties linked to HYC. OXA demonstrates cross-resistance in Schistosoma strains with HYC resistance and both are prodrugs requiring metabolic activation in the worm to toxic sulfated forms. The target activating enzyme has been identified as a sulfotransferase enzyme and is currently used as the basis for a structure-guided drug design program. Here, we characterize the sulfotransferases from S. mansoni and S. haematobium in complexes with HYC to compare and contrast with OXA-bound sulfotransferase crystal structures. Although HYC is discontinued for antischistosomal treatment, it can serve as a resource for design of derivative compounds without contraindication.


Assuntos
Hicantone , Oxamniquine/análogos & derivados , Esquistossomose/tratamento farmacológico , Sulfotransferases , Animais , Cristalização/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Resistência a Medicamentos , Humanos , Hicantone/efeitos adversos , Hicantone/análogos & derivados , Hicantone/química , Oxamniquine/química , Oxamniquine/uso terapêutico , Praziquantel/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/uso terapêutico , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
8.
J Biol Chem ; 294(41): 15172-15175, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511327

RESUMO

Proteolysis targeting chimeras (PROTACs) are bivalent molecules that bring a cellular protein to a ubiquitin ligase E3 for ubiquitination and subsequent degradation. Although PROTAC has emerged as a promising therapeutic means for cancers as it rewires the ubiquitin pathway to destroy key cancer regulators, the degradation signals/pathways for PROTACs remain underdeveloped. Here we append single amino acids, the simplest degradation signal, to a ligand specific for estrogen-related receptor α (ERRα) and demonstrate their utility in ERRα knockdown via the N-end rule pathway and also their efficiency in the growth inhibition of breast cancer cells. The modular design described offers unique advantages including smaller molecular size with shortest degradation sequences and degradation speed modulation with different amino acids. Our study expands the repertoire of limited ubiquitin pathways currently available for PROTACs and could be easily adapted for broad use in targeted protein degradation.


Assuntos
Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Receptores de Estrogênio/química , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
9.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243048

RESUMO

Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin-producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin-producing E. coli infections.


Assuntos
Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Tamoxifeno/farmacologia , Autofagia , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais
11.
J Oral Pathol Med ; 48(5): 389-399, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30825343

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a deadly disease with a mere 40% five-year survival rate for patients with advanced disease. Previously, we discovered that capsazepine (CPZ), a transient receptor potential channel, Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-tumor effects against OSCC via a unique mechanism-of-action that is independent of TRPV1. Thus, we developed novel CPZ analogs with more potent anti-proliferative effects (CIDD-24, CIDD-99, and CIDD-111). METHODS: Using OSCC xenograft models, we determined the efficacy of these analogs in vivo. TRPV1 interactions were evaluated using calcium imaging and a rat model of orofacial pain. Anti-cancer mechanism(s)-of-action were assessed by cell cycle analysis and mitochondrial depolarization assays. RESULTS: CIDD-99 was the most potent analog demonstrating significant anti-tumor effects in vivo (P < 0.001). CIDD-24 was equipotent to the parent compound CPZ, but less potent than CIDD-99. CIDD-111 was the least efficacious analog. Calcium imaging studies confirmed that CIDD-99 neither activates nor inhibits TRPV1 confirming that TRPV1 activity is not involved in its anti-cancer effects. All analogs induced an S-phase block, dose-dependent mitochondrial depolarization, and apoptosis. Histological analyses revealed increased apoptosis and reduced cell proliferation in tumors treated with these analogs. Importantly, CIDD-99 had the most dramatic anti-tumor effects with 85% of tumors resolving leaving only minute traces of viable tissue. Additionally, CIDD-99 was non-noxious and demonstrated no observable adverse reactions CONCLUSION: This study describes a novel, highly efficacious, CPZ analog, CIDD-99, with dramatic anti-tumor effects against OSCC that may be efficacious as a lone therapy or in combination with standard therapies.


Assuntos
Apoptose , Capsaicina/análogos & derivados , Carcinoma de Células Escamosas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Isoquinolinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Capsaicina/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/patologia , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Pharmacol ; 163: 481-492, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753815

RESUMO

Aging is accompanied by progressive declines in skeletal muscle mass and strength and impaired regenerative capacity, predisposing older adults to debilitating age-related muscle deteriorations and severe morbidity. Muscle stem cells (muSCs) that proliferate, differentiate to fusion-competent myoblasts, and facilitate muscle regeneration are increasingly dysfunctional upon aging, impairing muscle recovery after injury. While regulators of muSC activity can offer novel therapeutics to improve recovery and reduce morbidity among aged adults, there are no known muSC regenerative small molecule therapeutics. We recently developed small molecule inhibitors of nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed with aging in skeletal muscles and linked to impairment of the NAD+ salvage pathway, dysregulated sirtuin 1 activity, and increased muSC senescence. We hypothesized that NNMT inhibitor (NNMTi) treatment will rescue age-related deficits in muSC activity to promote superior regeneration post-injury in aging muscle. 24-month old mice were treated with saline (control), and low and high dose NNMTi (5 and 10 mg/kg) for 1-week post-injury, or control and high dose NNMTi for 3-weeks post-injury. All mice underwent an acute muscle injury (barium chloride injection) locally to the tibialis anterior (TA) muscle, and received 5-ethynyl-2'-deoxyuridine systemically to analyze muSC activity. In vivo contractile function measurements were conducted on the injured TA muscle and tissues collected for ex-vivo analyses, including myofiber cross-sectional area (CSA) measurements to assess muscle recovery. Results revealed that muscle stem cell proliferation and subsequent fusion were elevated in NNMTi-treated mice, supporting nearly 2-fold greater CSA and shifts in fiber size distribution to greater proportions of larger sized myofibers and fewer smaller sized fibers in NNMTi-treated mice compared to controls. Prolonged NNMTi treatment post-injury further augmented myofiber regeneration evinced by increasingly larger fiber CSA. Importantly, improved muSC activity translated not only to larger myofibers after injury but also to greater contractile function, with the peak torque of the TA increased by ∼70% in NNMTi-treated mice compared to controls. Similar results were recapitulated in vitro with C2C12 myoblasts, where NNMTi treatment promoted and enhanced myoblast differentiation with supporting changes in the cellular NAD+/NADH redox states. Taken together, these results provide the first clear evidence that NNMT inhibitors constitute a viable pharmacological approach to enhance aged muscle regeneration by rescuing muSC function, supporting the development of NNMTi as novel mechanism-of-action therapeutic to improve skeletal muscle regenerative capacity and functional recovery after musculoskeletal injury in older adults.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mioblastos , Distribuição Aleatória
13.
Bioorg Med Chem ; 27(1): 208-215, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528162

RESUMO

We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure-activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells. Cell viability assays identified multiple compounds with IC50s < 15 µM and one compound, 29 with an IC50 < 5 µM; six fold more potent than CPZ. We validated the anti-proliferative efficacy of two lead compounds, 17 and 29, in vivo using HeLa-derived xenografts in athymic nude mice. Both analogs significantly reduced tumor volumes by day 8 compared to control treated animals (p < 0.001) with no observable adverse effects. Calcium imaging determined that compound 17 activates TRPV1 whereas 29 neither activates nor inhibits TRPV1; indicating a unique mechanism-of-action that does not involve TRPV1 signaling. Cell viability assays using a panel of additional tumor types including oral squamous cell carcinoma, non-small cell lung cancer (NSCLC), breast cancer, and prostate cancer cell lines (HSC-3, H460, MDA-231, and PC-3 respectively) demonstrated that both lead compounds were efficacious against every cancer type tested. Compounds 29 displayed IC50s of 1-2.5 µM in HSC-3and PC-3cells. Thus, we propose that these novel CPZ analogs may serve as efficacious therapeutic agents against multiple tumor types that warrant further development for clinical application.


Assuntos
Antineoplásicos/uso terapêutico , Capsaicina/análogos & derivados , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Capsaicina/síntese química , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Pharmacol ; 147: 141-152, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155147

RESUMO

There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD+) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD+ salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD+ and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD+ and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Dieta Hiperlipídica/efeitos adversos , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Células 3T3 , Adipócitos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
J Med Chem ; 60(22): 9275-9289, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29053266

RESUMO

Targeted therapies for ER+/PR+ and HER2-amplified breast cancers have improved patient survival, but there are no therapies for triple negative breast cancers (TNBC) that lack expression of estrogen and progesterone receptors (ER/PR), or amplification or overexpression of HER2. Gene expression profiling of TNBC has identified molecular subtypes and representative cell lines. An extract of the Texas native plant Amyris texana was found to have selective activity against MDA-MB-453 cells, a model of the luminal androgen receptor (LAR) subtype of TNBC. Bioassay-guided fractionation identified two oxazole natural products with selective activity against this cell line. Conducted analog synthesis and structure-activity relationship studies provided analogs with more potent and selective activity against two LAR subtype cell line models, culminating in the discovery of compound 30 (CIDD-0067106). Lead compounds discovered have potent and selective antiproliferative activities, and mechanisms of action studies show they inhibit the activity of the mTORC1 pathway.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Oxazóis/farmacologia , Prolina/análogos & derivados , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/isolamento & purificação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Oxazóis/síntese química , Oxazóis/isolamento & purificação , Prolina/síntese química , Prolina/isolamento & purificação , Prolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rutaceae/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo
16.
J Med Chem ; 60(12): 5015-5028, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28548833

RESUMO

Nicotinamide N-methyltransferase (NNMT) is a fundamental cytosolic biotransforming enzyme that catalyzes the N-methylation of endogenous and exogenous xenobiotics. We have identified small molecule inhibitors of NNMT with >1000-fold range of activity and developed comprehensive structure-activity relationships (SARs) for NNMT inhibitors. Screening of N-methylated quinolinium, isoquinolinium, pyrididium, and benzimidazolium/benzothiazolium analogues resulted in the identification of quinoliniums as a promising scaffold with very low micromolar (IC50 ∼ 1 µM) NNMT inhibition. Computer-based docking of inhibitors to the NNMT substrate (nicotinamide)-binding site produced a robust correlation between ligand-enzyme interaction docking scores and experimentally calculated IC50 values. Predicted binding orientation of the quinolinium analogues revealed selective binding to the NNMT substrate-binding site residues and essential chemical features driving protein-ligand intermolecular interactions and NNMT inhibition. The development of this new series of small molecule NNMT inhibitors direct the future design of lead drug-like inhibitors to treat several metabolic and chronic disease conditions characterized by abnormal NNMT activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Bibliotecas de Moléculas Pequenas/química
17.
Biochemistry ; 56(6): 824-832, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28121423

RESUMO

Nicotinamide N-methyltransferase (NNMT) is an important biotransforming enzyme that catalyzes the transfer of a labile methyl group from the ubiquitous cofactor S-5'-adenosyl-l-methionine (SAM) to endogenous and exogenous small molecules to form methylated end products. NNMT has been implicated in a number of chronic disease conditions, including metabolic disorders, cardiovascular disease, cancer, osteoarthritis, kidney disease, and Parkinson's disease. We have developed a novel noncoupled fluorescence-based methyltransferase assay that allows direct ultrasensitive real-time detection of the NNMT reaction product 1-methylquinolinium. This is the first assay reported to date to utilize fluorescence spectroscopy to directly monitor NNMT product formation and activity in real time. This assay provided accurate kinetic data that allowed detailed comparative analysis of the NNMT reaction mechanism and kinetic parameters. A reaction model based on a random bireactant mechanism produced global curve fits that were most consistent with steady-state initial velocity data collected across an array of substrate concentrations. On the basis of the reaction mechanism, each substrate could independently bind to the NNMT apoenzyme; however, both substrates bound to the complementary binary complexes with an affinity ∼20-fold stronger compared to their binding to the apoenzyme. This reaction mechanism implies either substrate-induced conformational changes or bireactant intermolecular interactions may stabilize the binding of the substrate to the binary complex and formation of the ternary complex. Importantly, this assay could rapidly generate concentration response curves for known NNMT inhibitors, suggesting its applicability for high-throughput screening of chemical libraries to identify novel NNMT inhibitors. Furthermore, our novel assay potentially offers a robust detection technology for use in SAM substrate competition assays for the discovery and development of SAM-dependent methyltransferase inhibitors.


Assuntos
Modelos Moleculares , Nicotinamida N-Metiltransferase/metabolismo , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálise/efeitos dos fármacos , Calibragem , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Limite de Detecção , Metilação/efeitos dos fármacos , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/química , Nicotinamida N-Metiltransferase/genética , Conformação Proteica , Redobramento de Proteína/efeitos dos fármacos , Compostos de Quinolínio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , S-Adenosilmetionina/metabolismo , Espectrometria de Fluorescência
18.
Expert Opin Ther Pat ; 27(4): 455-476, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27967267

RESUMO

INTRODUCTION: Acetylcholinesterase (AChE) is the major enzyme that hydrolyzes acetylcholine, a key neurotransmitter for synaptic transmission, into acetic acid and choline. Mild inhibition of AChE has been shown to have therapeutic relevance in Alzheimer's disease (AD), myasthenia gravis, and glaucoma among others. In contrast, strong inhibition of AChE can lead to cholinergic poisoning. To combat this, AChE reactivators have to be developed to remove the offending AChE inhibitor, restoring acetylcholine levels to normal. Areas covered: This article covers recent advances in the development of acetylcholinesterase modulators, including both inhibitors of acetylcholinesterase for the efforts in development of new chemical entities for treatment of AD, as well as re-activators for resurrection of organophosphate bound acetylcholinesterase. Expert opinion: Over the past three years, research efforts have continued to identify novel small molecules as AChE inhibitors for both CNS and peripheral diseases. The more recent patent activity has focused on three AChE ligand design areas: derivatives of known AChE ligands, natural product based scaffolds and multifunctional ligands, all of which have produced some unique chemical matter with AChE inhibition activities in the mid picomolar to low micromolar ranges. New AChE inhibitors with polypharmacology or dual inhibitory activity have also emerged as highlighted by new AChE inhibitors with dual activity at L-type calcium channels, GSK-3, BACE1 and H3, although most only show low micromolar activity, thus further research is warranted. New small molecule reactivators of organophosphate-inhibited AChE have also been disclosed, which focused on the design of neutral ligands with improved pharmaceutical properties and blood-brain barrier (BBB) penetration. Gratifyingly, some research in this area is moving away from the traditional quaternary pyridinium oximes AChE reactivators, while still employing the necessary reactivation group (oximes). However, selectivity over inhibition of native AChE enzyme, effectiveness of reactivation, broad-spectrum reactivation against multiple organophosphates and reactivation of aged-enzyme continue to be hurdles for this area of research.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Inibidores da Colinesterase/uso terapêutico , Glaucoma/tratamento farmacológico , Glaucoma/fisiopatologia , Humanos , Ligantes , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/fisiopatologia , Patentes como Assunto
19.
Pediatr Blood Cancer ; 59(3): 485-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22238194

RESUMO

BACKGROUND: Alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) are among the most common and most treatment resistant soft tissue sarcomas of childhood. Here, we evaluated the potential of (18)F-Fluorodeoxyglucose (FDG) as a marker of therapeutic response to picropodophyllin (PPP), an IGF1R inhibitor, in a conditional mouse model of ARMS and a conditional model of ERMS/undifferentiated pleomorphic sarcoma (UPS). PROCEDURE: Primary tumor cell cultures from Myf6Cre,Pax3:Fkhr,p53 and Pax7CreER,Ptch1,p53 conditional models of ARMS and ERMS/UPS were found to be highly sensitive to PPP (IC(50) values 150 and 200 nM, respectively). Animals of each model were then treated with 80 mg/kg/day PPP by intraperitoneal injection for 12 days and imaged by (18)F-FDG microPET. RESULTS: Tumor volumes on day 4 for PPP-treated ARMS and ERMS mice were lower than untreated control mouse tumor volumes, although treated tumors were larger than day 0. However, tumor FDG uptake was significantly reduced on day 4 for PPP-treated mice compared to pretreatment baseline or untreated control mice on day 4 (P < 0.05). Nevertheless, by day 12 tumor volumes and FDG uptake for treated mice had increased significantly, indicating rapidly evolving resistance to therapy. CONCLUSIONS: (18)F-FDG PET imaging is a potential imaging biomarker of molecular susceptibility to targeted agents early in treatment for this aggressive form of sarcoma, but may find best use serially for Phase I/II studies where chemotherapy and targeted agents are combined to cytoreduce tumors and abrogate Igf1r inhibitor resistance.


Assuntos
Fluordesoxiglucose F18 , Podofilotoxina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Receptor IGF Tipo 1/antagonistas & inibidores , Rabdomiossarcoma/diagnóstico por imagem , Rabdomiossarcoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Podofilotoxina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA