Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Chron Obstruct Pulmon Dis ; 14: 2015-2025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564849

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a systemic condition that is too complex to be assessed by lung function alone. Metabolomics has the potential to help understand the mechanistic underpinnings that contribute to COPD pathogenesis. Since blood metabolomics may be affected by sex and body mass index (BMI), the aim of this study was to determine the metabolomic variability in male smokers with and without COPD who have a narrow BMI range. Methods: We compared the quantitative proton nuclear magnetic resonance acquired serum metabolomics of a male Chinese Han population of non-smokers without COPD, and smokers with and without COPD. We also assessed the impact of smoking status on metabolite concentrations and the associations between metabolite concentrations and inflammatory markers such as serum interleukin-6 and histamine, and blood cell differential (%). Metabolomics data were log-transformed and auto-scaled for parametric statistical analysis. Mean normalized metabolite concentration values and continuous demographic variables were compared by Student's t-test with Welch correction or ANOVA with post-hoc Tukey's test, as applicable; t-test p-values for metabolomics data were corrected for false discovery rate (FDR). A Pearson association matrix was built to evaluate the relationship between metabolite concentrations, clinical parameters and markers of inflammation. Results: Twenty-eight metabolites were identified and quantified. Creatine, glycine, histidine, and threonine concentrations were reduced in COPD patients compared to non-COPD smokers (FDR ≤15%). Concentrations of these metabolites were inversely correlated with interleukin-6 levels. COPD patients had overall dampening of metabolite concentrations including energy-related metabolic pathways such as creatine metabolism. They also had higher histamine levels and percent basophils compared to smokers without COPD. Conclusion: COPD is associated with alterations in the serum metabolome, including a disruption in the histidine-histamine and creatine metabolic pathways. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in COPD.Trial registration www.clinicaltrials.gov, NCT03310177.


Assuntos
Metabolismo Energético/fisiologia , Histidina/sangue , Metabolômica/métodos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Seguimentos , Homeostase , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Estudos Retrospectivos , Espirometria , Tomografia Computadorizada por Raios X
2.
J Pharm Sci ; 106(4): 1162-1174, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007559

RESUMO

Prolonged (8 weeks) oral administration of clofazimine results in a profound pharmacodynamic response-bioaccumulation in macrophages (including Kupffer cells) as intracellular crystal-like drug inclusions (CLDIs) with an associated increase in interleukin-1 receptor antagonist production. Notably, CLDI formation in Kupffer cells concomitantly occurs with the formation of macrophage-centric granulomas. Accordingly, we sought to understand the impact of these events on host metabolism using 1H-nuclear magnetic resonance metabolomics. Mice received a clofazimine or vehicle-enriched (sham) diet for at least 8 weeks. At 2 weeks, the antimicrobial activity of clofazimine was evident by changes in urine metabolites. From 2 to 8 weeks, there was a striking change in metabolite levels indicative of a reorientation of host energy metabolism paralleling the onset of CLDI and granuloma formation. This was evidenced by a progressive reduction in urine levels of metabolites involved in one-carbon metabolism with corresponding increases in whole blood, and changes in metabolites associated with lipid, nucleotide and amino acid metabolism, and glycolysis. Although clofazimine-fed mice ate more, they gained less weight than control mice. Together, these results indicate that macrophage sequestration of clofazimine as CLDIs and granuloma formation is accompanied by a profound metabolic disruption in energy homeostasis and one-carbon metabolism.


Assuntos
Clofazimina/administração & dosagem , Clofazimina/metabolismo , Metabolismo Energético/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Shock ; 44(3): 200-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26009817

RESUMO

Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBCs). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites. To determine differences between serum and WB metabolomes, both sample types, collected from healthy volunteers, were assayed by H-NMR (proton nuclear magnetic resonance) spectroscopy. A total of 34 and 50 aqueous metabolites were quantified from serum and WB, respectively. Free hemoglobin (Hgb) levels in serum were measured, and the correlation between Hgb and metabolite concentrations was determined. Most metabolites detected in serum were at higher concentrations in WB with the exception of acetoacetate and propylene glycol. The 18 unique metabolites of WB included adenosine, AMP, ADP, and ATP, which are associated with RBC metabolism. The use of serum results in the underrepresentation of a number of metabolic pathways including branched-chain amino acid degradation and glycolysis and gluconeogenesis. The range of free Hgb in serum was 0.03 to 0.01 g/dL, and eight metabolites were associated (P ≤ 0.05) with free Hgb. The range of free Hgb in serum samples from 18 sepsis patients was 0.02 to 0.46 g/dL. Whole blood and serum have unique aqueous metabolite profiles, but the use of serum may introduce potential pathway bias. Use of WB for metabolomics may be particularly important for studies in diseases such as sepsis in which RBC metabolism is altered, and mechanical and sepsis-induced hemolysis contributes to variance in the metabolome.


Assuntos
Proteínas Sanguíneas/metabolismo , Coleta de Amostras Sanguíneas/métodos , Metabolômica/métodos , Sepse/sangue , Adulto , Idoso , Feminino , Hemoglobinas/metabolismo , Hemólise/fisiologia , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Soro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA