Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067236

RESUMO

The tripartite motif (TRIM) family of E3 ubiquitin ligases is well known for its roles in antiviral restriction and innate immunity regulation, in addition to many other cellular pathways. In particular, TRIM25-mediated ubiquitination affects both carcinogenesis and antiviral response. While individual substrates have been identified for TRIM25, it remains unclear how it regulates diverse processes. Here we characterized a mutation, R54P, critical for TRIM25 catalytic activity, which we successfully utilized to "trap" substrates. We demonstrated that TRIM25 targets proteins implicated in stress granule formation (G3BP1/2), nonsense-mediated mRNA decay (UPF1), nucleoside synthesis (NME1), and mRNA translation and stability (PABPC4). The R54P mutation abolishes TRIM25 inhibition of alphaviruses independently of the host interferon response, suggesting that this antiviral effect is a direct consequence of ubiquitination. Consistent with that, we observed diminished antiviral activity upon knockdown of several TRIM25-R54P specific interactors including NME1 and PABPC4. Our findings highlight that multiple substrates mediate the cellular and antiviral activities of TRIM25, illustrating the multi-faceted role of this ubiquitination network in modulating diverse biological processes.


Assuntos
Antivirais , DNA Helicases , Antivirais/metabolismo , DNA Helicases/metabolismo , Interferons/metabolismo , Nucleosídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
2.
Sci Adv ; 8(12): eabm0220, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333580

RESUMO

Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 µg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais , Camelídeos Americanos/metabolismo , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo
3.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208100

RESUMO

Stress granules (SGs) are dynamic RNA-protein complexes localized in the cytoplasm that rapidly form under stress conditions and disperse when normal conditions are restored. The formation of SGs depends on the Ras-GAP SH3 domain-binding protein (G3BP). Formations, interactions and functions of plant and human SGs are strikingly similar, suggesting a conserved mechanism. However, functional analyses of plant G3BPs are missing. Thus, members of the Arabidopsis thaliana G3BP (AtG3BP) protein family were investigated in a complementation assay in a human G3BP knock-out cell line. It was shown that two out of seven AtG3BPs were able to complement the function of their human homolog. GFP-AtG3BP fusion proteins co-localized with human SG marker proteins Caprin-1 and eIF4G1 and restored SG formation in G3BP double KO cells. Interaction between AtG3BP-1 and -7 and known human G3BP interaction partners such as Caprin-1 and USP10 was also demonstrated by co-immunoprecipitation. In addition, an RG/RGG domain exchange from Arabidopsis G3BP into the human G3BP background showed the ability for complementation. In summary, our results support a conserved mechanism of SG function over the kingdoms, which will help to further elucidate the biological function of the Arabidopsis G3BP protein family.


Assuntos
Arabidopsis/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fenótipo , Filogenia , Ligação Proteica , Domínios Proteicos
4.
Cells ; 9(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326388

RESUMO

Alphaviruses can infect a broad range of vertebrate hosts, including birds, horses, primates, and humans, in which infection can lead to rash, fever, encephalitis, and arthralgia or arthritis. They are most often transmitted by mosquitoes in which they establish persistent, asymptomatic infections. Currently, there are no vaccines or antiviral therapies for any alphavirus. Several Old World alphaviruses, including Semliki Forest virus, Ross River virus and chikungunya virus, activate or hyperactivate the phosphatidylinositol-3-kinase (PI3K)-AKT pathway in vertebrate cells, potentially influencing many cellular processes, including survival, proliferation, metabolism and autophagy. Inhibition of PI3K or AKT inhibits replication of several alphaviruses either in vitro or in vivo, indicating the importance for viral replication. In this review, we discuss what is known about the mechanism(s) of activation of the pathway during infection and describe those effects of PI3K-AKT activation which could be of advantage to the alphaviruses. Such knowledge may be useful for the identification and development of therapies.


Assuntos
Alphavirus/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Alphavirus/metabolismo , Animais , Autofagia , Ativação Enzimática , Humanos
5.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941782

RESUMO

We present a comprehensive overview of the dependency of several Old World alphaviruses for the host protein G3BP. Based on their replication ability in G3BP-deleted cells, Old World alphaviruses can be categorized into two groups, being either resistant or sensitive to G3BP deletion. We observed that all sensitive viruses have an Arg residue at the P4 position of the cleavage site between the nonstructural protein P1 (nsP1) and nsP2 regions of the replicase precursor polyprotein (1/2 site), while a different residue is found at this site in viruses resistant to G3BP deletion. Swapping this residue between resistant and sensitive viruses also switches the G3BP deletion sensitivity. In the absence of G3BP, chikungunya virus (CHIKV) replication is at the limit of detection. The P4 Arg-to-His substitution partially rescues this defect. The P4 residue of the 1/2 site is known to play a regulatory role during processing at this site, and we found that if processing is blocked, the influence of the P4 residue on the sensitivity to G3BP deletion is abolished. Immunofluorescence experiments with CHIKV replicase with manipulated processing indicate that the synthesis of double-stranded RNA is defective in the absence of G3BP and suggest a role of G3BP during negative-strand RNA synthesis. This study provides a functional link between the host protein G3BP and the P4 residue of the 1/2 site for viral RNA replication of Old World alphaviruses. While this suggests a link between G3BP proteins and viral replicase polyprotein processing, we propose that G3BP proteins do not have a regulatory role during polyprotein processing.IMPORTANCE Old World alphaviruses comprise several medically relevant viruses, including chikungunya virus and Ross River virus. Recurrent outbreaks and the lack of antivirals and vaccines demand ongoing research to fight the emergence of these infectious diseases. In this context, a thorough investigation of virus-host interactions is critical. Here, we highlight the importance of the host protein G3BP for several Old World alphaviruses. Our data strongly suggest that G3BP plays a crucial role for the activity of the viral replicase and, thus, the amplification of the viral RNA genome. To our knowledge, the present work is the first to provide a functional link between the regulation of viral polyprotein processing and RNA replication and a host factor for alphaviruses. Moreover, the results of this study raise several questions about the fundamental regulatory mechanisms that dictate the activity of the viral replicase, thereby paving the way for future studies.


Assuntos
Vírus Chikungunya/fisiologia , DNA Helicases/genética , Deleção de Genes , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Aedes , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Febre de Chikungunya/virologia , Cricetinae , Genoma Viral , Humanos , Poliproteínas/metabolismo , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
6.
PLoS Pathog ; 15(6): e1007842, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199850

RESUMO

G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs.


Assuntos
Proteínas de Transporte/metabolismo , Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , DNA Helicases/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Febre de Chikungunya/genética , Febre de Chikungunya/patologia , Cricetinae , DNA Helicases/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Domínios Proteicos , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
7.
PLoS One ; 13(4): e0195956, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684045

RESUMO

Tenovin-6 is the most studied member of a family of small molecules with antitumour activity in vivo. Previously, it has been determined that part of the effects of tenovin-6 associate with its ability to inhibit SirT1 and activate p53. However, tenovin-6 has also been shown to modulate autophagic flux. Here we show that blockage of autophagic flux occurs in a variety of cell lines in response to certain tenovins, that autophagy blockage occurs regardless of the effect of tenovins on SirT1 or p53, and that this blockage is dependent on the aliphatic tertiary amine side chain of these molecules. Additionally, we evaluate the contribution of this tertiary amine to the elimination of proliferating melanoma cells in culture. We also demonstrate that the presence of the tertiary amine is sufficient to lead to death of tumour cells arrested in G1 phase following vemurafenib treatment. We conclude that blockage of autophagic flux by tenovins is necessary to eliminate melanoma cells that survive B-Raf inhibition and achieve total tumour cell kill and that autophagy blockage can be achieved at a lower concentration than by chloroquine. This observation is of great relevance as relapse and resistance are frequently observed in cancer patients treated with B-Raf inhibitors.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Indóis/farmacologia , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Antineoplásicos/química , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Estrutura Molecular , Mutação , Sirtuínas/genética , Proteína Supressora de Tumor p53/genética , Vemurafenib
8.
Viruses ; 10(3)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495654

RESUMO

Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions.


Assuntos
Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Códon de Terminação , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
9.
PLoS Pathog ; 14(1): e1006835, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377936

RESUMO

Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.


Assuntos
Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alphavirus/patogenicidade , Animais , Células Cultivadas , Cricetinae , Ativação Enzimática , Glicólise/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ross River virus/fisiologia , Vírus da Floresta de Semliki/fisiologia , Virulência
10.
J Infect Dis ; 216(10): 1308-1317, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28968805

RESUMO

Acute respiratory virus infections predispose the cystic fibrosis (CF) lung to chronic bacterial colonization, which contributes to high mortality. For reasons unknown, respiratory virus infections have a prolonged duration in CF. Here, we demonstrate that mice carrying the most frequent cystic fibrosis transmembrane conductance regulator (CFTR) mutation in humans, ΔF508, show increased morbidity and mortality following infection with a common human enterovirus. ΔF508 mice demonstrated impaired viral clearance, a slower type I interferon response and delayed production of virus-neutralizing antibodies. While the ΔF508 mice had a normal immune cell repertoire, unchanged serum immunoglobulin concentrations and an intact immune response to a T-cell-independent antigen, their response to a T-cell-dependent antigen was significantly delayed. Our studies reveal a novel function for CFTR in antiviral immunity and demonstrate that the ΔF508 mutation in cftr is coupled to an impaired adaptive immune response. This important insight could open up new approaches for patient care and treatment.


Assuntos
Imunidade Adaptativa/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/imunologia , Imunidade Inata/genética , Mutação , Viroses/etiologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Códon , Fibrose Cística/complicações , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Interferon-alfa/biossíntese , Camundongos , Poli I-C/imunologia , Taxa de Sobrevida , Carga Viral
11.
J Cell Biol ; 212(7): 845-60, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27022092

RESUMO

Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/enzimologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Grânulos Citoplasmáticos/genética , DNA Helicases , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Microscopia Confocal , Microscopia de Vídeo , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção , Ubiquitina Tiolesterase/genética
12.
J Virol ; 90(8): 4150-4159, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865723

RESUMO

UNLABELLED: The alphaviral6kgene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the6kproteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel6kin-frame deletion mutant. Comprehensive microscopic analysis revealed that the6kproteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the6kproteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a higher temperature. While the6kdeletion did not reduce RRV particle production in BHK-21 cells, it affected virion release from the host cell. Subsequentin vivostudies demonstrated that RRV-(Δ6K) caused a milder disease than wild-type virus, with viral titers being reduced in infected mice. Immunization of mice with RRV-(Δ6K) resulted in a reduced viral load and accelerated viral elimination upon secondary infection with wild-type RRV or another alphavirus, chikungunya virus (CHIKV). Our results show that the6kproteins may contribute to alphaviral disease manifestations and suggest that manipulation of the6kgene may be a potential strategy to facilitate viral vaccine development. IMPORTANCE: Arthritogenic alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), cause epidemics of debilitating rheumatic disease in areas where they are endemic and can emerge in new regions worldwide. RRV is of considerable medical significance in Australia, where it is the leading cause of arboviral disease. The mechanisms by which alphaviruses persist and cause disease in the host are ill defined. This paper describes the phenotypic properties of an RRV6kdeletion mutant. The absence of the6kgene reduced virion release from infected cells and also reduced the severity of disease and viral titers in infected mice. Immunization with the mutant virus protected mice against viremia not only upon exposure to RRV but also upon challenge with CHIKV. These findings could lead to the development of safer and more immunogenic alphavirus vectors for vaccine delivery.


Assuntos
Infecções por Alphavirus/virologia , Ross River virus/genética , Ross River virus/imunologia , Proteínas Estruturais Virais/genética , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/fisiopatologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Cricetinae , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mutação , Fases de Leitura , Ross River virus/patogenicidade , Deleção de Sequência , Células Vero , Carga Viral , Proteínas Estruturais Virais/análise , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
13.
J Virol ; 89(22): 11420-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339054

RESUMO

UNLABELLED: Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE: SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human pathogen, causing high fever and joint pain, while SFV is a low-pathogenic model virus, albeit neuropathogenic in mice. We show that both SFV and CHIKV activate the prosurvival PI3K-Akt-mTOR pathway in cells but greatly differ in their capacities to do so: Akt is strongly and persistently activated by SFV infection but only moderately activated by CHIKV. We mapped this activation capacity to a region in nonstructural protein 3 (nsP3) of SFV and could functionally transfer this region to CHIKV. Akt activation is linked to the subcellular dynamics of replication complexes, which are efficiently internalized from the cell periphery for SFV but not CHIKV. This difference in signal pathway stimulation and replication complex localization may have implications for pathology.


Assuntos
Vírus Chikungunya/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/genética , Vírus da Floresta de Semliki/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Infecções por Alphavirus/virologia , Androstadienos/farmacologia , Animais , Linhagem Celular Tumoral , Vírus Chikungunya/genética , Cricetinae , Ativação Enzimática , Humanos , Camundongos , Naftiridinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Estrutura Terciária de Proteína/genética , Vírus da Floresta de Semliki/genética , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral , Wortmanina
14.
Science ; 346(6216): 1486-92, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25525240

RESUMO

Multivalent molecules with repetitive structures including bacterial capsular polysaccharides and viral capsids elicit antibody responses through B cell receptor (BCR) crosslinking in the absence of T cell help. We report that immunization with these T cell-independent type 2 (TI-2) antigens causes up-regulation of endogenous retrovirus (ERV) RNAs in antigen-specific mouse B cells. These RNAs are detected via a mitochondrial antiviral signaling protein (MAVS)-dependent RNA sensing pathway or reverse-transcribed and detected via the cGAS-cGAMP-STING pathway, triggering a second, sustained wave of signaling that promotes specific immunoglobulin M production. Deficiency of both MAVS and cGAS, or treatment of MAVS-deficient mice with reverse transcriptase inhibitors, dramatically inhibits TI-2 antibody responses. These findings suggest that ERV and two innate sensing pathways that detect them are integral components of the TI-2 B cell signaling apparatus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Antígenos T-Independentes/imunologia , Linfócitos B/imunologia , Retrovirus Endógenos/imunologia , Nucleotidiltransferases/imunologia , RNA Viral/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Formação de Anticorpos , Citosol/imunologia , DNA/imunologia , Retrovirus Endógenos/genética , Ativação Linfocitária , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/genética , RNA Viral/genética , Transcrição Gênica
15.
Cell Microbiol ; 15(8): 1385-400, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23421931

RESUMO

Secondary infections with Streptococcus pneumoniae (SP) are frequently observed following influenza A virus (IAV) infection and have a substantial impact on global health. Despite this, the basis for the disease progression is incompletely understood. To investigate the effect of co-infection on human monocyte-derived dendritic cells (MDDCs) we analysed the expression of clinically important pro-inflammatory and immune-modulatory cytokines. IAV infection or treatment with supernatants from IAV-infected cell cultures resulted in priming of the DCs which subsequently influenced the production of IL-12p70, as well as IL-6, following SP infection. Co-infection of the same cell was not required but this effect was dependent on the time, dose and duration of the infections, as well as pathogen viability, bacterial uptake and endosome acidification. Bacterially infected cells were characterized as the main producers of IL-12p70. Finally, we showed that type I interferons were primarily responsible for the priming of IL-12p70 that was observed by infection with IAV. These results provide a probable mechanism for the elevated levels of particular cytokines observed in IAV and SP co-infected cell cultures with implications for the pathogenic outcome observed during in vivo infection.


Assuntos
Coinfecção/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/patogenicidade , Células Cultivadas , Comorbidade , Células Dendríticas/microbiologia , Células Dendríticas/virologia , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/epidemiologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Infecções Pneumocócicas/epidemiologia , Transdução de Sinais/fisiologia , Streptococcus pneumoniae/fisiologia , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 109(31): 12286-93, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22761313

RESUMO

Using chemical germ-line mutagenesis, we screened mice for defects in the humoral immune response to a type II T-independent immunogen and an experimental alphavirus vector. A total of 26 mutations that impair humoral immunity were recovered, and 19 of these mutations have been positionally cloned. Among the phenovariants were bumble, cellophane, and Worker ascribed to mutations in Nfkbid, Zeb1, and Ruvbl2, respectively. We show that IκBNS, the nuclear IκB-like protein encoded by Nfkbid, is required for the development of marginal zone and peritoneal B-1 B cells and additionally required for extrafollicular antibody responses to T-independent and -dependent immunogens. Zeb1 is also required for marginal zone and peritoneal B-1 B-cell development as well as T-cell development, germinal center formation, and memory B-cell responses. Finally, Ruvbl2 is required for T-cell development and maximal T-dependent antibody responses. Collectively, the mutations that we identified give us insight into the points at which disruption of an antibody response can occur. All of the mutations identified to date directly affect lymphocyte development or function; none have an exclusive effect on cells of the innate immune system.


Assuntos
Subpopulações de Linfócitos B/imunologia , DNA Helicases/imunologia , Proteínas de Homeodomínio/imunologia , Imunidade Humoral/fisiologia , Fatores de Transcrição Kruppel-Like/imunologia , Proteínas/imunologia , ATPases Associadas a Diversas Atividades Celulares , Animais , Células Cultivadas , DNA Helicases/genética , Proteínas de Homeodomínio/genética , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas/genética , Linfócitos T/imunologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco
17.
J Virol ; 86(10): 5674-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438538

RESUMO

Autophagy is a cellular process that sequesters cargo in double-membraned vesicles termed autophagosomes and delivers this cargo to lysosomes to be degraded. It is enhanced during nutrient starvation to increase the rate of amino acid turnover. Diverse roles for autophagy have been reported for viral infections, including the assembly of viral replication complexes on autophagic membranes and protection of host cells from cell death. Here, we show that autophagosomes accumulate in Semliki Forest virus (SFV)-infected cells. Despite this, disruption of autophagy had no effect on the viral replication rate or formation of viral replication complexes. Also, viral proteins rarely colocalized with autophagosome markers, suggesting that SFV did not utilize autophagic membranes for its replication. Further, we found that SFV infection, unlike nutrient starvation, did not inactivate the constitutive negative regulator of autophagosome formation, mammalian target of rapamycin, suggesting that SFV-dependent accumulation of autophagosomes was not a result of enhanced autophagosome formation. In starved cells, addition of NH(4)Cl, an inhibitor of lysosomal acidification, caused a dramatic accumulation of starvation-induced autophagosomes, while in SFV-infected cells, NH(4)Cl did not further increase levels of autophagosomes. These results suggest that accumulation of autophagosomes in SFV-infected cells is due to an inhibition of autophagosome degradation rather than enhanced rates of autophagosome formation. Finally, we show that the accumulation of autophagosomes in SFV-infected cells is dependent on the expression of the viral glycoprotein spike complex.


Assuntos
Infecções por Alphavirus/fisiopatologia , Autofagia , Glicoproteínas/metabolismo , Fagossomos/metabolismo , Vírus da Floresta de Semliki/fisiologia , Proteínas Estruturais Virais/metabolismo , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Cricetinae , Glicoproteínas/genética , Humanos , Camundongos , Vírus da Floresta de Semliki/genética , Proteínas Estruturais Virais/genética
18.
J Gen Virol ; 88(Pt 10): 2774-2779, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17872531

RESUMO

Viral vectors encoding heterologous vaccine antigens are potent inducers of cellular immune responses, but they are generally less efficient at stimulating humoral immunity. To improve the induction of antibody responses by Semliki Forest virus-based vaccines, a vector encoding a translation-enhancer element and a novel internal signal sequence for increased expression and secretion of soluble antigens was designed. Approximately tenfold more human immunodeficiency virus type 1 gp120 was secreted into culture supernatants of infected cells using the enhanced vector compared with the parental vector. This translated into a significant increase in gp120-specific antibodies in immunized mice, suggesting that antigen-expression levels from the parental vector are limiting for induction of antibody responses. These data encourage the use of the enhanced vector for elicitation of immune responses against heterologous antigens during vaccination.


Assuntos
Anticorpos Anti-HIV/biossíntese , HIV-1/genética , Vírus da Floresta de Semliki/genética , Proteínas do Envelope Viral/genética , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Regulação Viral da Expressão Gênica , Vetores Genéticos , Proteína gp120 do Envelope de HIV/biossíntese , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Rim , Metionina/metabolismo , Fragmentos de Peptídeos/química , Vírus da Floresta de Semliki/imunologia , Proteínas do Envelope Viral/biossíntese
19.
J Virol ; 81(16): 8677-84, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17553895

RESUMO

The type I interferons (IFNs) are potent mediators of antiviral immunity, and many viruses have developed means to block their expression or their effects. Semliki Forest virus (SFV) infection induces rapid and profound silencing of host cell gene expression, a process believed to be important for the inhibition of the IFN response. In SFV-infected cells, a large proportion of the nonstructural protein nsp2 is found in the nucleus, but a role for this localization has not been described. In this work we demonstrate that a viral mutant, SFV4-RDR, in which the nuclear localization sequence of nsp2 has been rendered inactive, induces a significantly more robust IFN response in infected cells. This mutant virus replicates at a rate similar to that of the parental SFV4 strain and also shuts off host cell gene expression to similar levels, indicating that the general cellular shutoff is not responsible for the inhibition of IFN expression. Further, the rate of virus-induced nuclear translocation of early IFN transcription factors was not found to differ between the wild-type and mutant viruses, indicating that the effect of nsp2 is at a later stage. These results provide novel information about the mode of action of this viral IFN antagonist.


Assuntos
Cisteína Endopeptidases/metabolismo , Interferon Tipo I/metabolismo , Vírus da Floresta de Semliki/fisiologia , Animais , Núcleo Celular/enzimologia , Células Cultivadas , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Regulação da Expressão Gênica , Interferon Tipo I/genética , Camundongos , Sinais de Localização Nuclear , Vírus da Floresta de Semliki/enzimologia , Vírus da Floresta de Semliki/genética , Fatores de Transcrição/metabolismo , Replicação Viral
20.
J Virol ; 79(16): 10376-85, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051830

RESUMO

Alpha/beta interferons (IFN-alpha/beta) are key mediators of innate immunity and important modulators of adaptive immunity. The mechanisms by which IFN-alpha/beta are induced are becoming increasingly well understood. Recent studies showed that Toll-like receptors 7 and 8 expressed by plasmacytoid dendritic cells (pDCs) mediate the endosomal recognition of incoming viral RNA genomes, a process which requires myeloid differentiation factor 88 (MyD88). Here we investigate the requirements for virus-induced IFN-alpha/beta production in cultures of bone marrow-derived murine myeloid DCs (mDCs). Using recombinant Semliki Forest virus blocked at different steps in the viral life cycle, we show that replication-defective virus induced IFN-alpha/beta in mDCs while fusion-defective virus did not induce IFN-alpha/beta. The response to replication-defective virus was largely intact in MyD88-/- mDC cultures but was severely reduced in mDC cultures from mice lacking IFN regulatory factor 3. Our observations suggest that mDCs respond to incoming virus via a pathway that differs from the fusion-independent, MyD88-mediated endosomal pathway described for the induction of IFN-alpha/beta in pDCs. We propose that events during or downstream of viral fusion, but prior to replication, can activate IFN-alpha/beta in mDCs. Thus, mDCs may contribute to the antiviral response activated by the immune system at early time points after infection.


Assuntos
Antígenos de Diferenciação/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células Dendríticas/metabolismo , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Células Mieloides/metabolismo , Receptores Imunológicos/fisiologia , Vírus da Floresta de Semliki/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cricetinae , Concentração de Íons de Hidrogênio , Fator Regulador 3 de Interferon , Fusão de Membrana , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide , Receptores de Superfície Celular/fisiologia , Vírus da Floresta de Semliki/efeitos da radiação , Receptores Toll-Like , Raios Ultravioleta , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA