Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392827

RESUMO

Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.

2.
Cell Cycle ; 22(6): 633-644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36426865

RESUMO

Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.


Assuntos
Neoplasias , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Citocinese , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Contráteis/metabolismo , Actinas/metabolismo
3.
Cell Cycle ; 20(18): 1845-1860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34382912

RESUMO

Cytokinesis is the final stage of the cell cycle which separates cellular constituents to produce two daughter cells. Using the fission yeast Schizosaccharomyces pombe we have investigated the role of various classes of proteins involved in this process. Central to these is anillin/Mid1p which forms a ring-like structure at the cell equator that predicts the site of cell separation through septation in fission yeast. Here we demonstrate a direct physical interaction between Mid1p and the endosomal sorting complex required for transport (ESCRT)-associated protein Vps4p, a genetic interaction of the mid1 and vps4 genes essential for cell viability, and a requirement of Vps4p for the correct cellular localization of Mid1p. Furthermore, we show that Mid1p is phosphorylated by aurora kinase, a genetic interaction of the mid1 and the aurora kinase ark1 genes is essential for cell viability, and that Ark1p is also required for the correct cellular localization of Mid1p. We mapped the sites of phosphorylation of Mid1p by human aurora A and the polo kinase Plk1 and assessed their importance in fission yeast by mutational analysis. Such analysis revealed serine residues S332, S523 and S531 to be required for Mid1p function and its interaction with Vps4p, Ark1p and Plo1p. Combined these data suggest a physical interaction between Mid1p and Vps4p important for cytokinesis, and identify phosphorylation of Mid1p by aurora and polo kinases as being significant for this process.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Contráteis/metabolismo , Citocinese/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais/genética , Aurora Quinases/genética , Aurora Quinases/metabolismo , Sobrevivência Celular/genética , Análise Mutacional de DNA/métodos , Genes Fúngicos , Microrganismos Geneticamente Modificados/metabolismo , Mitose/genética , Mutação , Fosforilação/genética , Transporte Proteico/genética , Proteínas de Schizosaccharomyces pombe/genética
4.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27239285

RESUMO

Recent studies have revealed exciting new functions for forkhead transcription factors in cell proliferation and development. Cell proliferation is a fundamental process controlled by multiple overlapping mechanisms, and the control of gene expression plays a major role in the orderly and timely division of cells. This occurs through transcription factors regulating the expression of groups of genes at particular phases of the cell division cycle. In this way, the encoded gene products are present when they are required. This review outlines recent advances in our understanding of this process in yeast model systems and describes how this knowledge has informed analysis in more developmentally complex eukaryotes, particularly where it is relevant to human disease.

5.
PLoS One ; 9(10): e111789, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25356547

RESUMO

Cytokinesis and cell separation are critical events in the cell cycle. We show that Endosomal Sorting Complex Required for Transport (ESCRT) genes are required for cell separation in Schizosaccharomyces pombe. We identify genetic interactions between ESCRT proteins and polo and aurora kinases and Cdc14 phosphatase that manifest as impaired growth and exacerbated defects in septation, suggesting that the encoded proteins function together to control these processes. Furthermore, we observed defective endosomal sorting in mutants of plo1, ark1 and clp1, as has been reported for ESCRT mutants, consistent with a role for these kinases in the control of ESCRT function in membrane traffic. Multiple observations indicate functional interplay between polo and ESCRT components: firstly, two-hybrid in vivo interactions are reported between Plo1p and Sst4p, Vps28p, Vps25p, Vps20p and Vps32p; secondly, co-immunoprecipitation of human homologues of Vps20p, Vps32p, Vps24p and Vps2p by human Plk1; and thirdly, in vitro phosphorylation of budding yeast Vps32p and Vps20p by polo kinase. Two-hybrid analyses also identified interactions between Ark1p and Vps20p and Vps32p, and Clp1p and Vps28p. These experiments indicate a network of interactions between ESCRT proteins, plo1, ark1 and clp1 that coordinate membrane trafficking and cell separation in fission yeast.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Epistasia Genética , Mitose , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Schizosaccharomyces/citologia , Proteínas de Ciclo Celular , Endossomos/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Transporte Proteico , Proteínas Proto-Oncogênicas , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Quinase 1 Polo-Like
6.
Cell Cycle ; 10(4): 664-70, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21304269

RESUMO

Checkpoints monitor the successful completion of cell cycle processes, such as DNA replication, and also regulate the expression of cell cycle-dependent genes that are required for responses. In the model yeast Schizosaccharomyces pombe G 1/S phase-specific gene expression is regulated by the MBF (also known as DSC1) transcription factor complex and is also activated by the mammalian ATM/ATR-related Rad3 DNA replication checkpoint. Here, we show that the Yox1 homeodomain transcription factor acts to co-ordinate the expression of MBF-regulated genes during the cell division cycle. Moreover, our data suggests that Yox1 is inactivated by the Rad3 DNA replication checkpoint via phosphorylation by the conserved Cds1 checkpoint kinase. Collectively, our data has implications for understanding the mechanisms underlying the coordination of cell cycle processes in eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Adv Genet ; 73: 51-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21310294

RESUMO

The regulation of gene expression through the mitotic cell cycle, so that genes are transcribed at particular cell cycle times, is widespread among eukaryotes. In some cases, it appears to be important for control mechanisms, as deregulated expression results in uncontrolled cell divisions, which can cause cell death, disease, and malignancy. In this review, I describe the current understanding of such regulated gene expression in two established simple eukaryotic model organisms, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In these two yeasts, the global pattern of cell cycle gene expression has been well described, and most of the transcription factors that control the various waves of gene expression, and how they are in turn themselves regulated, have been characterized. As related mechanisms occur in all other eukaryotes, including humans, yeasts offer an excellent paradigm to understand this important molecular process.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolução Biológica , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Expressão Gênica , Genes Fúngicos , Humanos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
8.
Curr Genet ; 50(2): 73-80, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16691419

RESUMO

Much scientific research has focused on characterising regulatory pathways and mechanisms responsible for cell integrity, growth and division. This area of study is of direct relevance to human medicine as uncontrolled growth and division underlies many diseases, most strikingly cancer. In cancer cells, normal regulatory mechanisms for growth and division are often altered, or even fail to exist. This review summarises the mechanisms that control the genes and gene products regulating cytokinesis and cell separation in the fission yeast Schizosaccharomyces pombe, as well as highlighting conserved aspects in the budding yeast Saccharomyces cerevisiae and higher eukaryotes. Particular emphasis is put on the role of gene expression, the Polo-like kinases (Plks), and the signal transduction pathways that control these processes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Leveduras/genética , Modelos Biológicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA