Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 60: 164-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23598283

RESUMO

Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.


Assuntos
Androgênios/farmacologia , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Organogênese/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Testosterona/farmacologia , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Fatores de Transcrição MEF2/biossíntese , Fatores de Transcrição MEF2/genética , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Organogênese/fisiologia , Receptores Androgênicos/genética , Elementos de Resposta/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
2.
J Cell Physiol ; 226(11): 3064-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21302306

RESUMO

FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas S100/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transfecção
3.
Immunity ; 32(3): 367-78, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20226691

RESUMO

Inflammatory caspases are essential effectors of inflammation and cell death. Here, we investigated their roles in colitis and colorectal cancer and report a bimodal regulation of intestinal homeostasis, inflammation and tumorigenesis by caspases-1 and -12. Casp1(-/-) mice exhibited defects in mucosal tissue repair and succumbed rapidly after dextran sulfate sodium administration. This phenotype was rescued by administration of exogenous interleukin-18 and was partially reproduced in mice deficient in the inflammasome adaptor ASC. Casp12(-/-) mice, in which the inflammasome is derepressed, were resistant to acute colitis and showed signs of enhanced repair. Together with their increased inflammatory response, the enhanced repair response of Casp12(-/-) mice rendered them more susceptible to colorectal cancer induced by azoxymethane (AOM)+DSS. Taken together, our results indicate that the inflammatory caspases are critical in the induction of inflammation in the gut after injury, which is necessary for tissue repair and maintenance of immune tolerance.


Assuntos
Caspase 12/metabolismo , Caspase 1/metabolismo , Colite/enzimologia , Colite/imunologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Homeostase , Animais , Caspase 1/deficiência , Caspase 1/imunologia , Caspase 12/deficiência , Caspase 12/imunologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Colite/complicações , Colite/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Tolerância Imunológica , Interleucina-18/biossíntese , Interleucina-18/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo
4.
Apoptosis ; 14(4): 522-35, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19156527

RESUMO

Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed "the inflammatory caspases". They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed "pyroptosis". By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases.


Assuntos
Apoptose/imunologia , Infecções/imunologia , Inflamação/imunologia , Animais , Caspases/imunologia , Morte Celular/imunologia , Humanos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA