Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984625

RESUMO

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Assuntos
Infecções por HIV , Inibidores da Transcriptase Reversa , Humanos , Inibidores da Transcriptase Reversa/efeitos adversos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Reposicionamento de Medicamentos , Infecções por HIV/tratamento farmacológico , Envelhecimento
2.
Cell Rep ; 42(1): 111928, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640360

RESUMO

The human population is aging, and the need for interventions to slow progression of age-related diseases (geroprotective interventions) is growing. Repurposing compounds already used clinically, usually at modified doses, allows rapid implementation of geroprotective pharmaceuticals. Here we find the anti-retroviral nucleoside reverse transcriptase inhibitor (NRTI) zidovudine robustly extends lifespan and health span in C. elegans, independent of electron transport chain impairment or ROS accumulation. Rather, zidovudine treatment modifies pyrimidine metabolism and transcripts related to proteostasis. Testing regulators of mitochondrial stress and proteostasis shows that lifespan extension is dependent on activating transcription factor 4 (ATF-4). ATF-4 regulates longevity induced by mitochondrial stress, specifically communication between mitochondrial and cytosolic translation. Translation is reduced in zidovudine-treated worms, also dependent on ATF-4. Finally, we show ATF-4-dependent lifespan extension induced by didanosine, another NRTI. Altogether, our work elucidates the geroprotective effects of NRTIs such as zidovudine in vivo, via reduction of translation and ATF-4.


Assuntos
Infecções por HIV , Zidovudina , Animais , Humanos , Zidovudina/farmacologia , Zidovudina/uso terapêutico , Longevidade , Fator 4 Ativador da Transcrição , Caenorhabditis elegans/fisiologia , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Retroviridae , Infecções por HIV/tratamento farmacológico
3.
Ageing Res Rev ; 78: 101621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421606

RESUMO

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Idoso , Envelhecimento/genética , Suplementos Nutricionais , Proteína Forkhead Box O3/genética , Humanos , Longevidade/fisiologia , Preparações Farmacêuticas
4.
FASEB J ; 35(4): e21456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724555

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Assuntos
NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/efeitos dos fármacos , Homeostase , Humanos , Túbulos Renais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NAD/genética , Mononucleotídeo de Nicotinamida/química , Traumatismo por Reperfusão
5.
PLoS Genet ; 15(3): e1007633, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845140

RESUMO

The deregulation of metabolism is a hallmark of aging. As such, changes in the expression of metabolic genes and the profiles of amino acid levels are features associated with aging animals. We previously reported that the levels of most amino acids decline with age in Caenorhabditis elegans (C. elegans). Glycine, in contrast, substantially accumulates in aging C. elegans. In this study we show that this is coupled to a decrease in gene expression of enzymes important for glycine catabolism. We further show that supplementation of glycine significantly prolongs C. elegans lifespan, and early adulthood is important for its salutary effects. Moreover, supplementation of glycine ameliorates specific transcriptional changes that are associated with aging. Glycine feeds into the methionine cycle. We find that mutations in components of this cycle, methionine synthase (metr-1) and S-adenosylmethionine synthetase (sams-1), completely abrogate glycine-induced lifespan extension. Strikingly, the beneficial effects of glycine supplementation are conserved when we supplement with serine, which also feeds into the methionine cycle. RNA-sequencing reveals a similar transcriptional landscape in serine- and glycine-supplemented worms both demarked by widespread gene repression. Taken together, these data uncover a novel role of glycine in the deceleration of aging through its function in the methionine cycle.


Assuntos
Caenorhabditis elegans/metabolismo , Glicina/metabolismo , Longevidade/fisiologia , Metionina/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Dieta , Genes de Helmintos , Glicina/administração & dosagem , Longevidade/efeitos dos fármacos , Longevidade/genética , Redes e Vias Metabólicas/genética , Mutação , Interferência de RNA , Serina/administração & dosagem , Serina/metabolismo , Transcriptoma/efeitos dos fármacos
6.
BMC Obes ; 2: 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217518

RESUMO

BACKGROUND: The potential health effects of polybrominated diphenyl ethers (PBDEs) that are widely used as flame-retardants in consumer products have been attributed, in part, to their endocrine disrupting properties. The purpose of this study is to examine the in vivo effects of an early exposure to PBDEs on the development of insulin resistance in mice. RESULTS: The metabolic consequences of BDE-47 in mice with varying insulin sensitivities secondary to liver-specific activation of Akt (Pten (fl/fl);Alb (Cre)) and mTORC1 (Tsc1 (fl/fl);Alb (Cre)) as well as wild-type littermates, were studied. BDE-47, a dominant congener of PBDE, was given daily (1 mg/kg/day) for six weeks by oral gavage in young mice following weaning. At the end of the exposure, there were no significant differences in total body, liver, or white adipose tissue weights between the BDE-47-treated vs. DMSO-treated mice for each respective genotype. Metabolic studies revealed significant impairment in insulin sensitivity in the BDE-47-treated Pten (fl/fl);Alb (Cre) mice, but not in wild-type or Tsc1 (fl/fl);Alb (Cre) mice. This was not accompanied by significant alterations in plasma insulin levels or hepatic triglyceride accumulation in the Pten (fl/fl);Alb (Cre) mice. The mean plasma BDE-47 level in the wild-type mice was 11.7 ± 2.9 ng/g (wet weight). CONCLUSIONS: Our findings indicate that BDE-47 exposure during the early post-natal period induces a mild disturbance in glucose metabolism in susceptible mice with increased baseline insulin sensitivity. These results suggest an interaction between BDE-47 and genetic factors that regulate insulin signaling, which may result in long-term consequences.

7.
Gastroenterology ; 144(5): 1055-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23376645

RESUMO

BACKGROUND & AIMS: Phosphatidylinositide 3-kinase (PI3K) is deregulated in many human tumor types, including primary liver malignancies. The kinase v-akt murine thymoma viral oncogene homolog 1 (Akt) and mammalian target of rapamycin complex (mTORC1) are effectors of PI3K that promote cell growth and survival, but their individual roles in tumorigenesis are not well defined. METHODS: In livers of albumin (Alb)-Cre mice, we selectively deleted tuberous sclerosis (Tsc)1, a negative regulator of Ras homolog enriched in brain and mTORC1, along with Phosphatase and tensin homolog (Pten), a negative regulator of PI3K. Tumor tissues were characterized by histologic and biochemical analyses. RESULTS: The Tsc1fl/fl;AlbCre, Ptenfl/fl;AlbCre, and Tsc1fl/fl;Ptenfl/fl;AlbCre mice developed liver tumors that differed in size, number, and histologic features. Livers of Tsc1fl/fl;AlbCre mice did not develop steatosis; tumors arose later than in the other strains of mice and were predominantly hepatocellular carcinomas. Livers of the Ptenfl/fl;AlbCre mice developed steatosis and most of the tumors that formed were intrahepatic cholangiocarcinomas. Livers of Tsc1fl/fl;Ptenfl/fl;AlbCre formed large numbers of tumors, of mixed histologies, with the earliest onset of any strain, indicating that loss of Tsc1 and Pten have synergistic effects on tumorigenesis. In these mice, the combination of rapamycin and MK2206 was more effective in reducing liver cell proliferation and inducing cell death than either reagent alone. Tumor differentiation correlated with Akt and mTORC1 activities; the ratio of Akt:mTORC1 activity was high throughout the course of intrahepatic cholangiocarcinomas development and low during hepatocellular carcinoma development. Compared with surrounding nontumor liver tissue, tumors from all 3 strains had increased activities of Akt, mTORC1, and mitogen-activated protein kinase and overexpressed fibroblast growth factor receptor 1. Inhibition of fibroblast growth factor receptor 1 in Tsc1-null mice suppressed Akt and mitogen-activated protein kinase activities in tumor cells. CONCLUSIONS: Based on analyses of knockout mice, mTORC1 and Akt have different yet synergistic effects during the development of liver tumors in mice.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/genética , Complexos Multiproteicos/genética , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/genética , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA