Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27881418

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE: We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied antagonistic profiles against a panel of clinical P. aeruginosa isolates, suggesting the presence of distinct mechanisms of inhibition among these ecological strains. Understanding the properties of these antagonistic events offers the potential for discoveries of antimicrobial compounds or metabolic pathways important to the development of novel treatments for P. aeruginosa infections.


Assuntos
Antibiose , Fibrose Cística/microbiologia , Microbiologia Ambiental , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas/fisiologia , Humanos
2.
Naturwissenschaften ; 102(9-10): 63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26391849

RESUMO

Euchelicerates were a major component of Palaeozoic faunas, but their basal relationships are uncertain: it has been suggested that Xiphosura-xiphosurids (horseshoe crabs) and similar Palaeozoic forms, the synziphosurines-may not represent a natural group. Basal euchelicerates are rare in the fossil record, however, particularly during the initial Ordovician radiation of the group. Here, we describe Winneshiekia youngae gen. et sp. nov., a euchelicerate from the Middle Ordovician (Darriwilian) Winneshiek Lagerstätte of Iowa, USA. Winneshiekia shares features with both xiphosurans (a large, semicircular carapace and ophthalmic ridges) and dekatriatan euchelicerates such as chasmataspidids and eurypterids (an opisthosoma of 13 tergites). Phylogenetic analysis resolves Winneshiekia at the base of Dekatriata, as sister taxon to a clade comprising chasmataspidids, eurypterids, arachnids, and Houia. Winneshiekia provides further support for the polyphyly of synziphosurines, traditionally considered the stem lineage to xiphosurid horseshoe crabs, and by extension the paraphyly of Xiphosura. The new taxon reveals the ground pattern of Dekatriata and provides evidence of character polarity in chasmataspidids and eurypterids. The Winneshiek Lagerstätte thus represents an important palaeontological window into early chelicerate evolution.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Fósseis/anatomia & histologia , Filogenia , Animais , Iowa
3.
BMC Evol Biol ; 15: 169, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324341

RESUMO

BACKGROUND: Eurypterids are a diverse group of chelicerates known from ~250 species with a sparse Ordovician record currently comprising 11 species; the oldest fully documented example is from the Sandbian of Avalonia. The Middle Ordovician (Darriwilian) fauna of the Winneshiek Lagerstätte includes a new eurypterid species represented by more than 150 specimens, including some juveniles, preserved as carbonaceous cuticular remains. This taxon represents the oldest described eurypterid, extending the documented range of the group back some 9 million years. RESULTS: The new eurypterid species is described as Pentecopterus decorahensis gen. et sp. nov.. Phylogenetic analysis places Pentecopterus at the base of the Megalograptidae, united with the two genera previously assigned to this family by the shared possession of two or more pairs of spines per podomere on prosomal appendage IV, a reduction of all spines except the pair on the penultimate podomere of appendage V, and an ornamentation of guttalate scales, including angular scales along the posterior margin of the dorsal tergites and in longitudinal rows along the tergites. The morphology of Pentecopterus reveals that the Megalograptidae are representatives of the derived carcinosomatoid clade and not basal eurypterids as previously interpreted. CONCLUSIONS: The relatively derived position of megalograptids within the eurypterids indicates that most eurypterid clades were present by the Middle Ordovician. Eurypterids either underwent an explosive radiation soon after their origination, or earlier representatives, perhaps Cambrian in age, remain to be discovered. The available instars of Pentecopterus decorahensis suggest that eurypterids underwent extreme appendage differentiation during development, a potentially unique condition among chelicerates. The high degree of appendage specialization in eurypterids is only matched by arachnids within chelicerates, supporting a sister taxon relationship between them.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Fósseis , Animais , Iowa , Filogenia
4.
Proc Natl Acad Sci U S A ; 110(24): 9645-50, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23720311

RESUMO

The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.


Assuntos
Dióxido de Carbono/metabolismo , Clima , Temperatura Baixa , Efeito Estufa , Regiões Antárticas , Atmosfera , Dinoflagellida/crescimento & desenvolvimento , Fósseis , Geografia , Sedimentos Geológicos/química , Camada de Gelo , Biologia Marinha , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Tasmânia , Fatores de Tempo , Movimentos da Água
5.
Science ; 340(6130): 341-4, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599491

RESUMO

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Assuntos
Adaptação Fisiológica , Dinoflagellida/fisiologia , Ecossistema , Camada de Gelo , Oceanos e Mares , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Regiões Antárticas , Temperatura Baixa , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA