Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 38(7): 1441-1454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424137

RESUMO

Differentiation therapy has proven to be a success story for patients with acute promyelocytic leukemia. However, the remaining subtypes of acute myeloid leukemia (AML) are treated with cytotoxic chemotherapies that have limited efficacy and a high likelihood of resistance. As differentiation arrest is a hallmark of AML, there is increased interest in developing differentiation-inducing agents to enhance disease-free survival. Here, we provide a comprehensive review of current reports and future avenues of nucleic acid therapeutics for AML, focusing on the use of targeted nucleic acid drugs to promote differentiation. Specifically, we compare and discuss the precision of small interfering RNA, small activating RNA, antisense oligonucleotides, and aptamers to modulate gene expression patterns that drive leukemic cell differentiation. We delve into preclinical and clinical studies that demonstrate the efficacy of nucleic acid-based differentiation therapies to induce leukemic cell maturation and reduce disease burden. By directly influencing the expression of key genes involved in myeloid maturation, nucleic acid therapeutics hold the potential to induce the differentiation of leukemic cells towards a more mature and less aggressive phenotype. Furthermore, we discuss the most critical challenges associated with developing nucleic acid therapeutics for myeloid malignancies. By introducing the progress in the field and identifying future opportunities, we aim to highlight the power of nucleic acid therapeutics in reshaping the landscape of myeloid leukemia treatment.


Assuntos
Diferenciação Celular , Humanos , Diferenciação Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Ácidos Nucleicos/uso terapêutico , Animais , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico
2.
Cell Rep Med ; 4(9): 101191, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683650

RESUMO

Previous chemotherapy research has focused almost exclusively on apoptosis. Here, a standard frontline drug combination of cytarabine and idarubicin induces distinct features of caspase-independent, poly(ADP-ribose) polymerase 1 (PARP-1)-mediated programmed cell death "parthanatos" in acute myeloid leukemia (AML) cell lines (n = 3/10 tested), peripheral blood mononuclear cells from healthy human donors (n = 10/10 tested), and primary cell samples from patients with AML (n = 18/39 tested, French-American-British subtypes M4 and M5). A 3-fold improvement in survival rates is observed in the parthanatos-positive versus -negative patient groups (hazard ratio [HR] = 0.28-0.37, p = 0.002-0.046). Manipulation of PARP-1 activity in parthanatos-competent cells reveals higher drug sensitivity in cells that have basal PARP-1 levels as compared with those subjected to PARP-1 overexpression or suppression. The same trends are observed in RNA expression databases and support the conclusion that PARP-1 can have optimal levels for favorable chemotherapeutic responses.


Assuntos
Leucemia , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Apoptose , Linhagem Celular , Leucócitos Mononucleares , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
3.
ACS Cent Sci ; 9(3): 362-372, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968528

RESUMO

Chemical modifications to DNA bases, including DNA adducts arising from reactions with electrophilic chemicals, are well-known to impact cell growth, miscode during replication, and influence disease etiology. However, knowledge of how genomic sequences and structures influence the accumulation of alkylated DNA bases is not broadly characterized with high resolution, nor have these patterns been linked with overall quantities of modified bases in the genome. For benzo(a) pyrene (BaP), a ubiquitous environmental carcinogen, we developed a single-nucleotide resolution damage sequencing method to map in a human lung cell line the main mutagenic adduct arising from BaP. Furthermore, we combined this analysis with quantitative mass spectrometry to evaluate the dose-response profile of adduct formation. By comparing damage abundance with DNase hypersensitive sites, transcription levels, and other genome annotation data, we found that although overall adduct levels rose with increasing chemical exposure concentration, genomic distribution patterns consistently correlated with chromatin state and transcriptional status. Moreover, due to the single nucleotide resolution characteristics of this DNA damage map, we could determine preferred DNA triad sequence contexts for alkylation accumulation, revealing a characteristic DNA damage signature. This new BaP damage signature had a profile highly similar to mutational signatures identified previously in lung cancer genomes from smokers. Thus, these data provide insight on how genomic features shape the accumulation of alkylation products in the genome and predictive strategies for linking single-nucleotide resolution in vitro damage maps with human cancer mutations.

4.
ACS Pharmacol Transl Sci ; 4(6): 1716-1727, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927006

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a relatively new form of immunotherapy that has had success in treating patients with hematologic malignancies, leading to three recent United States Food and Drug Administration approvals. However, several challenges hinder the widespread use of CAR-T therapy. Here, we review the application of functional nucleic acids such as aptamers and ribozymes as novel tools to improve a variety of steps in CAR-T cell therapy development. We critically examine key studies that highlight the benefits of functional nucleic acids at different stages of cell-based therapy and discuss the feasibility of their practical clinical application. Finally, we offer insights into potential opportunities where chemists can significantly contribute to the innovative incorporation of functional nucleic acids to overcome challenges associated with this cutting-edge immunotherapy.

5.
Chem Soc Rev ; 49(20): 7354-7377, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32968744

RESUMO

Cellular DNA is constantly chemically altered by exogenous and endogenous agents. As all processes of life depend on the transmission of the genetic information, multiple biological processes exist to ensure genome integrity. Chemically damaged DNA has been linked to cancer and aging, therefore it is of great interest to map DNA damage formation and repair to elucidate the distribution of damage on a genome-wide scale. While the low abundance and inability to enzymatically amplify DNA damage are obstacles to genome-wide sequencing, new developments in the last few years have enabled high-resolution mapping of damaged bases. Recently, a number of DNA damage sequencing library construction strategies coupled to new data analysis pipelines allowed the mapping of specific DNA damage formation and repair at high and single nucleotide resolution. Strikingly, these advancements revealed that the distribution of DNA damage is heavily influenced by chromatin states and the binding of transcription factors. In the last seven years, these novel approaches have revealed new genomic maps of DNA damage distribution in a variety of organisms as generated by diverse chemical and physical DNA insults; oxidative stress, chemotherapeutic drugs, environmental pollutants, and sun exposure. Preferred sequences for damage formation and repair have been elucidated, thus making it possible to identify persistent weak spots in the genome as locations predicted to be vulnerable for mutation. As such, sequencing DNA damage will have an immense impact on our ability to elucidate mechanisms of disease initiation, and to evaluate and predict the efficacy of chemotherapeutic drugs.


Assuntos
Dano ao DNA , DNA/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , DNA/metabolismo , Adutos de DNA/química , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Guanina/análogos & derivados , Guanina/química , Humanos , Análise de Sequência de DNA
6.
Arch Toxicol ; 93(2): 559-572, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30446773

RESUMO

N-nitroso compounds are alkylating agents, which are widespread in our diet and the environment. They induce DNA alkylation adducts such as O6-methylguanine (O6-MeG), which is repaired by O6-methylguanine-DNA methyltransferase (MGMT). Persistent O6-MeG lesions have detrimental biological consequences like mutagenicity and cytotoxicity. Due to its pivotal role in the etiology of cancer and in cytotoxic cancer therapy, it is important to detect and quantify O6-MeG in biological specimens in a sensitive and accurate manner. Here, we used immunological approaches and established an ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to monitor O6-MeG adducts. First, colorectal cancer (CRC) cells were treated with the methylating anticancer drug temozolomide (TMZ). Immunofluorescence microscopy and an immuno-slot blot assay, both based on an adduct-specific antibody, allowed for the semi-quantitative, dose-dependent assessment of O6-MeG in CRC cells. Using the highly sensitive and specific UPLC-MS/MS, TMZ-induced O6-MeG adducts were quantified in CRC cells and even in peripheral blood mononuclear cells exposed to clinically relevant TMZ doses. Furthermore, all methodologies were used to detect O6-MeG in wildtype (WT) and MGMT-deficient mice challenged with the carcinogen azoxymethane. UPLC-MS/MS measurements and dose-response modeling revealed a non-linear formation of hepatic and colonic O6-MeG adducts in WT, whereas linear O6-MeG formation without a threshold was observed in MGMT-deficient mice. Collectively, the UPLC-MS/MS analysis is highly sensitive and specific for O6-MeG, thereby allowing for the first time for the determination of a genotoxic threshold upon exposure to O6-methylating agents. We envision that this method will be instrumental to monitor the efficacy of methylating chemotherapy and to assess dietary exposures.


Assuntos
Cromatografia Líquida/métodos , Adutos de DNA/análise , Guanina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Antineoplásicos Alquilantes/administração & dosagem , Azoximetano/administração & dosagem , Adutos de DNA/imunologia , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta a Droga , Guanina/análise , Guanina/imunologia , Células HCT116 , Humanos , Immunoblotting/métodos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia de Fluorescência/métodos , Sensibilidade e Especificidade , Temozolomida/administração & dosagem , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
J Nutr Biochem ; 63: 1-10, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071405

RESUMO

Mammalian mitochondria contain small genomes [mitochondrial DNA (mtDNA)], which encode several of the proteins that are crucial for respiration. As such, maintaining the integrity of mtDNA is essential for healthy life. Nutritional strategies such as "Calorie Restriction" may play an important role in regulating mtDNA integrity and prolonging lifespan. In this review, we compare mtDNA with nuclear DNA damage and discuss how the resulting cell fates relate to human health. We provide a description of the mechanisms behind Calorie Restriction as an approach to induce mitochondrial processes contributing to a longer lifespan. We make connections between the current repertoire of studies to propose that how nutrition may mitigate mitochondrial dysfunction and potentially reduce DNA damage. Finally, we describe nutritional-based approaches to prevent mitochondrial dysfunction with a focus on mimetics of dietary and calorie restriction.


Assuntos
Envelhecimento/genética , Dano ao DNA , DNA Mitocondrial/fisiologia , Dieta , Neoplasias/patologia , Animais , Restrição Calórica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/genética , Glucose/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
ACS Chem Biol ; 13(9): 2534-2541, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30040894

RESUMO

O6-Alkylguanine DNA adducts are repaired by the suicide enzyme alkylguanine alkyltransferase (AGT). AGT facilitates repair by binding DNA in the minor groove, flipping out the damaged base, and transferring the O6-alkyl group to a cysteine residue in the enzyme's active site. Despite there being significant knowledge concerning the mechanism of AGT repair, there is limited insight regarding how altered interactions of the adduct with its complementary base in the DNA duplex influence its recognition and repair. In this study, the relationship of base pairing interactions and repair by human AGT (hAGT) was tested in the frequently mutated codon 12 of the KRAS gene with complementary sequences containing each canonical DNA base. The rate of O6-MeG repair decreased 2-fold when O6-MeG was paired with G, whereas all other canonical bases had no impact on the repair rate. We used a combination of biochemical studies, molecular modeling, and artificial nucleobases to elucidate the mechanism accounting for the 2-fold decrease. Our results suggest that the reduced rate of repair is due to O6-MeG adopting a syn conformation about the glycosidic bond precluding the formation of a repair-active complex. These data provide a novel chemical basis for how direct reversion repair may be impeded through modification of the base pair partner and support the use of artificial nucleobases as tools to probe the biochemistry of damage repair processes.


Assuntos
Códon/genética , Adutos de DNA/metabolismo , Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Pareamento de Bases , Códon/metabolismo , Adutos de DNA/genética , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Modelos Moleculares , Mutação , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 115(17): E4061-E4070, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632181

RESUMO

Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1-/-) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1-/- mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1-/- animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1-/-/MGMT-/- double knockout (DKO) mice developed more, but much smaller tumors than MGMT-/- animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1-/- cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.


Assuntos
Neoplasias Colorretais/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Supressoras de Tumor/genética
10.
Int J Mol Sci ; 18(10)2017 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29065503

RESUMO

DNA is damaged on a daily basis, which can lead to heritable mutations and the activation of proto-oncogenes. Therefore, DNA damage and repair are critical risk factors in cancer, aging and disease, and are the underlying bases of most frontline cancer therapies. Much of our current understanding of the mechanisms that maintain DNA integrity has been obtained using antibody-based assays. The oligonucleotide equivalents of antibodies, known as aptamers, have emerged as potential molecular recognition rivals. Aptamers possess several ideal properties including chemical stability, in vitro selection and lack of batch-to-batch variability. These properties have motivated the incorporation of aptamers into a wide variety of analytical, diagnostic, research and therapeutic applications. However, their use in DNA repair studies and DNA damage therapies is surprisingly un-tapped. This review presents an overview of the progress in selecting and applying aptamers for DNA damage and repair research.


Assuntos
Aptâmeros de Nucleotídeos , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA