Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(6): 1260-1270, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739449

RESUMO

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Mitocôndrias , Sesterterpenos , Humanos , Sesterterpenos/farmacologia , Sesterterpenos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos
2.
Nature ; 627(8004): 680-687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448587

RESUMO

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Assuntos
Cátions , Ciclização , Indicadores e Reagentes , Proteínas , Triptofano , Cátions/química , Indicadores e Reagentes/química , Oxirredução , Proteoma/química , Triptofano/química , Peptídeos/química , Química Click , Proteínas/química
3.
ACS Cent Sci ; 9(5): 915-926, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252349

RESUMO

Targeted protein degradation with molecular glue degraders has arisen as a powerful therapeutic modality for eliminating classically undruggable disease-causing proteins through proteasome-mediated degradation. However, we currently lack rational chemical design principles for converting protein-targeting ligands into molecular glue degraders. To overcome this challenge, we sought to identify a transposable chemical handle that would convert protein-targeting ligands into molecular degraders of their corresponding targets. Using the CDK4/6 inhibitor ribociclib as a prototype, we identified a covalent handle that, when appended to the exit vector of ribociclib, induced the proteasome-mediated degradation of CDK4 in cancer cells. Further modification of our initial covalent scaffold led to an improved CDK4 degrader with the development of a but-2-ene-1,4-dione ("fumarate") handle that showed improved interactions with RNF126. Subsequent chemoproteomic profiling revealed interactions of the CDK4 degrader and the optimized fumarate handle with RNF126 as well as additional RING-family E3 ligases. We then transplanted this covalent handle onto a diverse set of protein-targeting ligands to induce the degradation of BRD4, BCR-ABL and c-ABL, PDE5, AR and AR-V7, BTK, LRRK2, HDAC1/3, and SMARCA2/4. Our study undercovers a design strategy for converting protein-targeting ligands into covalent molecular glue degraders.

4.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069799

RESUMO

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
5.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945520

RESUMO

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anti-cancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets-cysteine C53 of HIG2DA and lysine K72 of COX5A-that are part of complex IV of the electron transport chain and contributed significantly to the anti-proliferative activity. OPA activated mitochondrial respiration in a HIG2DA and COX5A-dependent manner, led to an initial spike in mitochondrial ATP, but then compromised mitochondrial membrane potential leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anti-cancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.

6.
ACS Chem Biol ; 18(4): 897-904, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36940189

RESUMO

Targeted protein degradation (TPD) with proteolysis targeting chimeras (PROTACs), heterobifunctional compounds consisting of protein targeting ligands linked to recruiters of E3 ubiquitin ligases, has arisen as a powerful therapeutic modality to induce the proximity of target proteins with E3 ligases to ubiquitinate and degrade specific proteins in cells. Thus far, PROTACs have primarily exploited the recruitment of E3 ubiquitin ligases or their substrate adapter proteins but have not exploited the recruitment of more core components of the ubiquitin-proteasome system (UPS). In this study, we used covalent chemoproteomic approaches to discover a covalent recruiter against the E2 ubiquitin conjugating enzyme UBE2D─EN67─that targets an allosteric cysteine, C111, without affecting the enzymatic activity of the protein. We demonstrated that this UBE2D recruiter could be used in heterobifunctional degraders to degrade neo-substrate targets in a UBE2D-dependent manner, including BRD4 and the androgen receptor. Overall, our data highlight the potential for the recruitment of core components of the UPS machinery, such as E2 ubiquitin conjugating enzymes, for TPD, and underscore the utility of covalent chemoproteomic strategies for identifying novel recruiters for additional components of the UPS.


Assuntos
Quimera de Direcionamento de Proteólise , Proteólise , Ubiquitina-Proteína Ligases , Ligantes , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/metabolismo
7.
Cell Chem Biol ; 30(4): 394-402.e9, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36898369

RESUMO

Targeted protein degradation has arisen as a powerful therapeutic modality for degrading disease targets. While proteolysis-targeting chimera (PROTAC) design is more modular, the discovery of molecular glue degraders has been more challenging. Here, we have coupled the phenotypic screening of a covalent ligand library with chemoproteomic approaches to rapidly discover a covalent molecular glue degrader and associated mechanisms. We have identified a cysteine-reactive covalent ligand EN450 that impairs leukemia cell viability in a NEDDylation and proteasome-dependent manner. Chemoproteomic profiling revealed covalent interaction of EN450 with an allosteric C111 in the E2 ubiquitin-conjugating enzyme UBE2D. Quantitative proteomic profiling revealed the degradation of the oncogenic transcription factor NFKB1 as a putative degradation target. Our study thus puts forth the discovery of a covalent molecular glue degrader that uniquely induced the proximity of an E2 with a transcription factor to induce its degradation in cancer cells.


Assuntos
NF-kappa B , Proteômica , NF-kappa B/metabolismo , Ligantes , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
J Am Chem Soc ; 144(50): 22890-22901, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484997

RESUMO

Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.


Assuntos
Neoplasias da Mama , Metionina , Humanos , Feminino , Quinase 4 Dependente de Ciclina/metabolismo , Ligantes , Fosforilação , Oxirredução , Racemetionina/metabolismo
9.
Nat Chem Biol ; 18(4): 412-421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210618

RESUMO

Many diseases are driven by proteins that are aberrantly ubiquitinated and degraded. These diseases would be therapeutically benefited by targeted protein stabilization (TPS). Here we present deubiquitinase-targeting chimeras (DUBTACs), heterobifunctional small molecules consisting of a deubiquitinase recruiter linked to a protein-targeting ligand, to stabilize the levels of specific proteins degraded in a ubiquitin-dependent manner. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48-ubiquitin-specific deubiquitinase OTUB1. We showed that a DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR), robustly stabilized ΔF508-CFTR protein levels, leading to improved chloride channel conductance in human cystic fibrosis bronchial epithelial cells. We also demonstrated stabilization of the tumor suppressor kinase WEE1 in hepatoma cells. Our study showcases covalent chemoproteomic approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.


Assuntos
Fibrose Cística , Quimera/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/uso terapêutico , Humanos , Ligantes , Ubiquitina/metabolismo
10.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994556

RESUMO

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Assuntos
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Azepinas/química , Sítios de Ligação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cisteína/química , Dasatinibe/química , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/química , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/genética
11.
Cell Chem Biol ; 28(4): 559-566.e15, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513350

RESUMO

The translation of functionally active natural products into fully synthetic small-molecule mimetics has remained an important process in medicinal chemistry. We recently discovered that the terpene natural product nimbolide can be utilized as a covalent recruiter of the E3 ubiquitin ligase RNF114 for use in targeted protein degradation-a powerful therapeutic modality within modern-day drug discovery. Using activity-based protein profiling-enabled covalent ligand-screening approaches, here we report the discovery of fully synthetic RNF114-based recruiter molecules that can also be exploited for PROTAC applications, and demonstrate their utility in degrading therapeutically relevant targets, such as BRD4 and BCR-ABL, in cells. The identification of simple and easily manipulated drug-like scaffolds that can mimic the function of a complex natural product is beneficial in further expanding the toolbox of E3 ligase recruiters, an area of great importance in drug discovery and chemical biology.


Assuntos
Produtos Biológicos/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Produtos Biológicos/química , Humanos , Estrutura Molecular , Ubiquitinação
12.
Cell Chem Biol ; 28(1): 4-13.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966806

RESUMO

MYC is a major oncogenic transcriptional driver of most human cancers that has remained intractable to direct targeting because much of MYC is intrinsically disordered. Here, we have performed a cysteine-reactive covalent ligand screen to identify compounds that could disrupt the binding of MYC to its DNA consensus sequence in vitro and also impair MYC transcriptional activity in situ in cells. We have identified a covalent ligand, EN4, that targets cysteine 171 of MYC within a predicted intrinsically disordered region of the protein. We show that EN4 directly targets MYC in cells, reduces MYC and MAX thermal stability, inhibits MYC transcriptional activity, downregulates multiple MYC transcriptional targets, and impairs tumorigenesis. We also show initial structure-activity relationships of EN4 and identify compounds that show improved potency. Overall, we identify a unique ligandable site within an intrinsically disordered region of MYC that leads to inhibition of MYC transcriptional activity.


Assuntos
Cisteína/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Células Cultivadas , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
13.
Sci Rep ; 10(1): 15543, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968148

RESUMO

Targeted protein degradation (TPD) has emerged as a powerful tool in drug discovery for the perturbation of protein levels using heterobifunctional small molecules. E3 ligase recruiters remain central to this process yet relatively few have been identified relative to the ~ 600 predicted human E3 ligases. While, initial recruiters have utilized non-covalent chemistry for protein binding, very recently covalent engagement to novel E3's has proven fruitful in TPD application. Herein we demonstrate efficient proteasome-mediated degradation of BRD4 by a bifunctional small molecule linking the KEAP1-Nrf2 activator bardoxolone to a BRD4 inhibitor JQ1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ácido Oleanólico/análogos & derivados , Fatores de Transcrição/metabolismo , Azepinas/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Triazóis/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
14.
Nat Chem Biol ; 16(11): 1189-1198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32572277

RESUMO

Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.


Assuntos
Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Polienos/química , Policetídeos/química , Alcamidas Poli-Insaturadas/química , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Conformação Molecular , Estrutura Molecular , Polienos/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
15.
ACS Chem Biol ; 15(7): 1788-1794, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568522

RESUMO

Targeted protein degradation (TPD) and proteolysis-targeting chimeras (PROTACs) have arisen as powerful therapeutic modalities for degrading specific proteins in a proteasome-dependent manner. However, a major limitation of TPD is the lack of E3 ligase recruiters. Recently, we discovered the natural product nimbolide as a covalent recruiter for the E3 ligase RNF114. Here, we show the broader utility of nimbolide as an E3 ligase recruiter for TPD applications. We demonstrate that a PROTAC linking nimbolide to the kinase and BCR-ABL fusion oncogene inhibitor dasatinib, BT1, selectively degrades BCR-ABL over c-ABL in leukemia cancer cells, compared to previously reported cereblon or VHL-recruiting BCR-ABL degraders that show opposite selectivity or, in some cases, inactivity. Thus, we further establish nimbolide as an additional general E3 ligase recruiter for PROTACs, and we demonstrate the importance of expanding upon the arsenal of E3 ligase recruiters, as such molecules confer differing selectivity for the degradation of neo-substrate proteins.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Limoninas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Tiazóis/farmacologia , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Células K562 , Limoninas/química , Inibidores de Proteínas Quinases/química , Tiazóis/química , Ubiquitina-Proteína Ligases/metabolismo
17.
Nat Chem Biol ; 15(7): 747-755, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209351

RESUMO

Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114-substrate recognition, leading to inhibition of ubiquitination and degradation of tumor suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the use of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Limoninas/farmacologia , Proteólise/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Limoninas/química , Limoninas/isolamento & purificação , Ubiquitina-Proteína Ligases
18.
ACS Chem Biol ; 14(11): 2430-2440, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059647

RESUMO

Targeted protein degradation has arisen as a powerful strategy for drug discovery allowing the targeting of undruggable proteins for proteasomal degradation. This approach most often employs heterobifunctional degraders consisting of a protein-targeting ligand linked to an E3 ligase recruiter to ubiquitinate and mark proteins of interest for proteasomal degradation. One challenge with this approach, however, is that only a few E3 ligase recruiters currently exist for targeted protein degradation applications, despite the hundreds of known E3 ligases in the human genome. Here, we utilized activity-based protein profiling (ABPP)-based covalent ligand screening approaches to identify cysteine-reactive small-molecules that react with the E3 ubiquitin ligase RNF4 and provide chemical starting points for the design of RNF4-based degraders. The hit covalent ligand from this screen reacted with either of two zinc-coordinating cysteines in the RING domain, C132 and C135, with no effect on RNF4 activity. We further optimized the potency of this hit and incorporated this potential RNF4 recruiter into a bifunctional degrader linked to JQ1, an inhibitor of the BET family of bromodomain proteins. We demonstrate that the resulting compound CCW 28-3 is capable of degrading BRD4 in a proteasome- and RNF4-dependent manner. In this study, we have shown the feasibility of using chemoproteomics-enabled covalent ligand screening platforms to expand the scope of E3 ligase recruiters that can be exploited for targeted protein degradation applications.


Assuntos
Complexos de Coordenação/química , Proteínas Nucleares/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos de Coordenação/metabolismo , Cisteína/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade , Ubiquitinação , Zinco/química
19.
Cell Rep ; 25(11): 3074-3085.e5, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540940

RESUMO

Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to high-dose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8+ effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs. Both hematopoietic cell STING expression and signaling through IFNAR are required for tumor-specific T cell activation, and in the context of optimized T cell responses, TNFα is dispensable for tumor control. In a poorly immunogenic model, S100 combined with CPIs generates a survival benefit and durable protection. These results provide fundamental mechanistic insights into STING-induced anti-tumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Animais , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Relação Dose-Resposta Imunológica , Resistencia a Medicamentos Antineoplásicos , Hematopoese , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas S100/administração & dosagem , Proteínas S100/imunologia
20.
J Med Chem ; 45(11): 2173-84, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12014955

RESUMO

Previously we reported the identification of RPR200765A, a potent orally bioavailable pyridine-imidazole inhibitor of p38 mitogen-activated protein (MAP) kinase which suppressed paw swelling and joint pathology in streptococcal cell wall-induced arthritis. Herein, we report the use of solid-phase combinatorial organic synthesis for the parallel processing of a related pyrimidine-imidazole-based library with two points of structural variability. We report also that the application of a computer algorithm, the Monte Carlo Monomer Selection, maximized both the combinatorial synthetic efficiency and the bioavailability of the final compounds. In conjunction with the synthetic protocols, the polymer-supported quench technique was applied to the purification of the final compounds. Through rapid evaluation of the library using a p38 kinase assay and permeability assays, it was possible to identify a number of potent and orally bioavailable p38 MAP kinase inhibitors suitable for further biological investigation.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Dioxanos/síntese química , Inibidores Enzimáticos/síntese química , Imidazóis/síntese química , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Piperazinas/síntese química , Pirimidinas/síntese química , Administração Oral , Algoritmos , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/sangue , Artrite Experimental/tratamento farmacológico , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular , Técnicas de Química Combinatória , Dioxanos/farmacocinética , Dioxanos/farmacologia , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Método de Monte Carlo , Piperazinas/farmacocinética , Piperazinas/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA