Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545648

RESUMO

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Assuntos
Ativação do Complemento/imunologia , Fibroblastos/imunologia , Hipertensão Pulmonar/imunologia , Imunoglobulina G/imunologia , Remodelação Vascular/imunologia , Animais , Complemento C3/imunologia , Complemento C5/imunologia , Fator B do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Imunoglobulinas/imunologia , Inflamação , Camundongos , Camundongos Knockout , Prognóstico , Hipertensão Arterial Pulmonar/imunologia , Ratos
2.
Circulation ; 136(25): 2468-2485, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28972001

RESUMO

BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1ß expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Piruvato Quinase/metabolismo , Processamento Alternativo , Animais , Antagomirs/metabolismo , Bovinos , Proliferação de Células , Endotélio Vascular/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glicólise , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hipertensão Pulmonar/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Naftoquinonas/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Interferência de RNA
3.
Nat Commun ; 8: 15494, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555642

RESUMO

Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-ß signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-ß blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-ß is regulated at the level of activation, but how TGF-ß is activated in this disease is unknown. Here we show TGF-ß activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-ß activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-ß could thus be a therapeutic approach in TGF-ß-dependent vascular diseases.


Assuntos
Células da Medula Óssea/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/parasitologia , Hipóxia/complicações , Schistosoma/fisiologia , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bovinos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/imunologia , Hipóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Th2/imunologia , Trombospondina 1/sangue , Trombospondina 1/genética
4.
Circ Res ; 114(1): 67-78, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24122720

RESUMO

RATIONALE: Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE: We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS: We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS: Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.


Assuntos
Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Adulto , Animais , Bovinos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipertensão Pulmonar Primária Familiar , Feminino , Fibroblastos/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fenótipo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Wistar , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Transcrição Gênica
5.
Am J Physiol Lung Cell Mol Physiol ; 303(1): L1-L11, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22582113

RESUMO

Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a "constitutively activated" phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the "activated" highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, α(V)ß(3) and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH.


Assuntos
Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Osteopontina/metabolismo , Artéria Pulmonar/metabolismo , Animais , Bovinos , Processos de Crescimento Celular/fisiologia , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Fibroblastos/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Concentração de Íons de Hidrogênio , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/patologia , Hipóxia/fisiopatologia , Integrina alfaVbeta3/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Invasividade Neoplásica , Osteopontina/sangue , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais
6.
J Immunol ; 187(5): 2711-22, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813768

RESUMO

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1ß, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Assuntos
Epigênese Genética , Fibroblastos/imunologia , Hipertensão Pulmonar/imunologia , Pneumonia/imunologia , Animais , Animais Recém-Nascidos , Western Blotting , Bovinos , Adesão Celular , Movimento Celular , Tecido Conjuntivo/imunologia , Citocinas/biossíntese , Fibroblastos/metabolismo , Imunofluorescência , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/imunologia , Hipóxia/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo , Pneumonia/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA