Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1002597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435521

RESUMO

Background: Lung cancer remains a major health problem world-wide. Environmental exposure to lung cancer carcinogens can affect lung cancer incidence. We investigated the association between lung cancer incidence and an air toxics hazard score of environmental carcinogen exposures derived previously under the exposome concept. Methods: Lung cancer cases diagnosed in Philadelphia and the surrounding counties between 2008 and 2017 were identified from the Pennsylvania Cancer Registry. Age-adjusted incidence rates at the ZIP code level were calculated based on the residential address at diagnosis. The air toxics hazard score, an aggregate measure for lung cancer carcinogen exposures, was derived using the criteria of toxicity, persistence, and occurrence. Areas with high incidence or hazard score were identified. Spatial autoregressive models were fitted to evaluate the association, with and without adjusting for confounders. Stratified analysis by smoking prevalence was performed to examine potential interactions. Results: We observed significantly higher age-adjusted incidence rates in ZIP codes that had higher air toxics hazard score values after controlling for demographic variables, smoking prevalence, and proximity to major highways. Analyzes stratified by smoking prevalence suggested that exposure to environmental lung carcinogens had a larger effect on cancer incidence in locations with higher smoking prevalence. Conclusion: The positive association between the multi-criteria derived air toxics hazard score and lung cancer incidence provides the initial evidence to validate the hazard score as an aggregate measure of carcinogenic exposures in the environment. The hazard score can be used to supplement the existing risk factors in identifying high risk individuals. Communities with higher incidence/hazard score may benefit from greater awareness of lung cancer risk factors and targeted screening programs.


Assuntos
Neoplasias Pulmonares , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Carcinógenos , Fumar , Carcinogênese
2.
Lung Cancer ; 170: 65-73, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716633

RESUMO

OBJECTIVE: Lung cancer is a leading cause of cancer death in the United States. Exposure to outdoor air pollution (OAP) is associated with increased lung cancer incidence, however little is known about the association of OAP and survival after diagnosis. METHODS: We investigated the effects of OAP and lung cancer survival in Pennsylvania using data from Pennsylvania Cancer Registry. The study population consisted of 252,123 patients diagnosed between 1990 and 2017. The Environmental Protection Agency's ambient air monitoring network provided information on OAP exposure of NO2, O3, PM2.5, and PM10. Mean OAP exposures were calculated by interpolating exposure concentrations from the five nearest monitors within a 50-kilometer radius of each patient's residential address from date of diagnosis to date of death or last contact. Cox proportional-hazards models were used to estimate the hazard ratios (HR) for OAP exposures for overall and lung cancer-specific survival. Statistical analyses were stratified by SEER cancer stage groupings (localized, regional, and distant) and adjusted for individual-level and area-level covariates. RESULTS: Median survival time was 0.76 [CIs: 0.75, 0.77] years for the study population and for localized, regional, and distant site diagnosis were 2.2 [CIs: 2.17, 2.23], 1.13 [CIs: 1.12, 1.15], and 0.42 [CIs: 0.41, 0.43] years, respectively. NO2 indicated the greatest HR which increased with increasing magnitude of exposure across all cancer staging groups for deaths before 2-years post-diagnosis. HRs varied by stage and magnitude of OAP exposure with greatest overall effects shown in NO2 followed by PM2.5, O3, and PM10. A subgroup analysis of patients with treatment status information (2010-2017) showed similar associations of increasing HRs with increasing exposure. CONCLUSION: These findings supported the hypotheses that OAP can influence the carcinogenic process, impairing chemotherapy treatment, and provide important public health implications since environmental factors are not often considered in prognosis of survival after diagnosis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/etiologia , Dióxido de Nitrogênio/análise , Material Particulado/análise , Pennsylvania/epidemiologia
3.
BMC Cancer ; 22(1): 555, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581566

RESUMO

BACKGROUND: It is known that geographic location plays a role in developing lung cancer. The objectives of this study were to examine spatio-temporal patterns of lung cancer incidence in Pennsylvania, to identify geographic clusters of high incidence, and to compare demographic characteristics and general physical and mental health characteristics in those areas. METHOD: We geocoded the residential addresses at the time of diagnosis for lung cancer cases in the Pennsylvania Cancer Registry diagnosed between 2010 and 2017. Relative risks over the expected case counts at the census tract level were estimated using a log-linear Poisson model that allowed for spatial and temporal effects. Spatio-temporal clusters with high incidence were identified using scan statistics. Demographics obtained from the 2011-2015 American Community Survey and health variables obtained from 2020 CDC PLACES database were compared between census tracts that were part of clusters versus those that were not. RESULTS: Overall, the age-adjusted incidence rates and the relative risk of lung cancer decreased from 2010 to 2017 with no statistically significant space and time interaction. The analyses detected 5 statistically significant clusters over the 8-year study period. Cluster 1, the most likely cluster, was in southeastern PA including Delaware, Montgomery, and Philadelphia Counties from 2010 to 2013 (log likelihood ratio = 136.6); Cluster 2, the cluster with the largest area was in southwestern PA in the same period including Allegheny, Fayette, Greene, Washington, and Westmoreland Counties (log likelihood ratio = 78.6). Cluster 3 was in Mifflin County from 2014 to 2016 (log likelihood ratio = 25.3), Cluster 4 was in Luzerne County from 2013 to 2016 (log likelihood ratio = 18.1), and Cluster 5 was in Dauphin, Cumberland, and York Counties limited to 2010 to 2012 (log likelihood ratio = 17.9). Census tracts that were part of the high incidence clusters tended to be densely populated, had higher percentages of African American and residents that live below poverty line, and had poorer mental health and physical health when compared to the non-clusters (all p < 0.001). CONCLUSIONS: These high incidence areas for lung cancer warrant further monitoring for other individual and environmental risk factors and screening efforts so lung cancer cases can be identified early and more efficiently.


Assuntos
Neoplasias Pulmonares , Negro ou Afro-Americano , Análise por Conglomerados , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Pennsylvania/epidemiologia , Sistema de Registros , Análise Espaço-Temporal
4.
Environ Res ; 199: 111288, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965388

RESUMO

BACKGROUND: Water total trihalomethanes (TTHMs) are disinfectant byproducts found in municipal water supplies. TTHM exposure has been linked to cancer and may be associated with adverse reproductive outcomes. A non-optimal cervicovaginal microbiota and low cervicovaginal beta-defensin-2 levels are associated with increased risk of spontaneous preterm birth. Whether TTHM exposure increases the risk of spontaneous preterm birth or alters the cervicovaginal microbial or immune state is unknown. OBJECTIVE: Investigate associations of water TTHM levels with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and beta-defensin-2 levels in a completed, diverse, urban pregnancy cohort. We hypothesized that higher TTHM levels would be associated with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and lower beta-defensin-2 levels. DESIGN: Methods: This was a secondary analysis of participants (n = 474) in the Motherhood & Microbiome (M&M) study (n = 2000), who lived in Philadelphia and had cervicovaginal samples analyzed for cervicovaginal microbiota composition and beta-defensin-2 levels. The microbiota was classified into community state types (CSTs). CST IV (non-optimal microbiota) is characterized by a paucity of Lactobacillus species and wide array of anaerobes. Municipal water TTHM levels were obtained from 16 sites monthly across the city of Philadelphia to establish mean residential water supply levels for each participant for the first four months of pregnancy (prior to vaginal swab collection at 16-20 weeks' gestation). Associations of water TTHM levels with spontaneous preterm birth and a non-optimal cervicovaginal microbiota birth were analyzed using multivariable logistic regression. Multivariable linear regression was used to model associations of water TTHM levels with log-transformed cervicovaginal beta-defensin-2 levels. Since water TTHM levels vary by season and beta-defensin-2 levels have been shown to differ by race, stratified models by warm (April-September) and cold (October-March) seasons as well as by self-identified race were utilized. RESULTS: Participants' water supply TTHM levels (mean µg/L [SD]) were higher in the warm (53.5 [9.4]) than cold (33.4 [7.5]) season (p < 0.0001). TTHM levels were non-significantly higher among Black participants than non-Black participants (44.8 [13.5] vs. 41.8 [11.8], p = 0.07). No associations were detected between TTHM with spontaneous preterm birth (per SD increment of TTHM, aOR 0.94, 95%CI: 0.66, 1.34) or with CST IV (aOR 0.94, 95%CI: 0.86, 1.16). Counter to our hypothesis, we observed positive associations of water TTHM with log-transformed cervicovaginal beta-defensin-2 levels in unadjusted models (ß 0.20 [95%CI: 0.02, 0.39]) per SD increment of TTHM), but the association was null after adjustment for season. However, in models adjusted for covariates including season and stratified by race, TTHM was significantly associated with lower beta-defensin-2 levels among non-Black participants (ß -0.75 [95%CI: -1.43, -0.08]) but not among Black participants (ß 0.17 [95%CI: -0.15, 0.49]), interaction p = 0.013). CONCLUSION: We did not detect associations of water TTHM levels with spontaneous preterm birth or the structure of the cervicovaginal microbiota. However, the finding of a significant interaction between TTHM and race on beta-defensin-2 levels suggest that environmental exposures may contribute to differences in reproductive tract innate immune function by race. Future studies to delineate environmental contributions to the cervicovaginal microbial-immune state, a potentially important biologic underpinning for preterm birth, are warranted.


Assuntos
Desinfetantes , Microbiota , Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Trialometanos/toxicidade , Abastecimento de Água
5.
Environ Sci Pollut Res Int ; 28(24): 31758-31769, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33611735

RESUMO

To illustrate methods for assessing environmental exposures associated with lung cancer risk, we investigated anthropogenic based air pollutant data in a major metropolitan area using United States-Environmental Protection Agency (US-EPA) Toxic Release Inventory (TRI) (1987-2017), and PM2.5 (1998-2016) and NO2 (1996-2012) concentrations from NASA satellite data. We studied chemicals reported according to the following five exposome features: (1) International Agency for Research on Cancer (IARC) cancer grouping; (2) priority EPA polycyclic aromatic hydrocarbons (PAHs); (3) component of diesel exhaust; (4) status as a volatile organic compound (VOC); and (5) evidence of lung carcinogenesis. Published articles from PubChem were tallied for occurrences of 10 key characteristics of cancer-causing agents on those chemicals. Zone Improvement Plan (ZIP) codes with higher exposures were identified in two ways: (1) combined mean exposure from all features, and (2) hazard index derived through a multi-step multi-criteria decision analysis (MMCDA) process. VOCs, IARC Group 1 carcinogens consisted 82.3% and 11.5% of the reported TRI emissions, respectively. ZIP codes along major highways tended to have greater exposure. The MMCDA approach yielded hazard indices based on imputed toxicity, occurrence, and persistence for risk assessment. Despite many studies describing environmental exposures and lung cancer risk, this study develops a method to integrate these exposures into population-based exposure estimates that could be incorporated into future lung cancer screening trials and benefit public health surveillance of lung cancer incidence. Our methodology may be applied to probe other hazardous exposures for other cancers.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Detecção Precoce de Câncer , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Pulmão/química , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise , Philadelphia , Medição de Risco
6.
Artigo em Inglês | MEDLINE | ID: mdl-33352953

RESUMO

This study investigated the geographic variation and the clustering of lung cancer incidence rates in Philadelphia and the surrounding areas using addresses at the time of diagnosis. Using 60,844 cases from Pennsylvania Cancer Registry, we calculated and mapped the age-adjusted incidence rates for five Pennsylvania (PA) counties near Philadelphia between 1998-2007 and 2008-2017. We identified ZIP codes with significantly higher incidence rates than the state rates and examined their demographic and exposure characteristics. Further, we tested for spatial autocorrelation and identified spatial clusters using Moran's I statistic. Our results showed that approximately one in four ZIP codes had an incidence rate that was significantly higher than the PA state rate in each period studied. Clusters of higher incidences were detected in the southeastern part of PA bordering New Jersey. These areas tended to be more populated, of lower socioeconomic status, and closer to manufacturing facilities and major highways. Possibly driven by the community and environmental factors, the observed differences in disease incidence suggest the importance of including residential location in risk assessment tools for lung cancer.


Assuntos
Neoplasias Pulmonares , Análise por Conglomerados , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , New Jersey/epidemiologia , Philadelphia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA