Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927901

RESUMO

High-dimensional radiomics features derived from pre-treatment positron emission tomography (PET) images offer prognostic insights for patients with head and neck squamous cell carcinoma (HNSCC). Using 124 PET radiomics features and clinical variables (age, sex, stage of cancer, site of cancer) from a cohort of 232 patients, we evaluated four survival models-penalized Cox model, random forest, gradient boosted model and support vector machine-to predict all-cause mortality (ACM), locoregional recurrence/residual disease (LR) and distant metastasis (DM) probability during 36, 24 and 24 months of follow-up, respectively. We developed models with five-fold cross-validation, selected the best-performing model for each outcome based on the concordance index (C-statistic) and the integrated Brier score (IBS) and validated them in an independent cohort of 102 patients. The penalized Cox model demonstrated better performance for ACM (C-statistic = 0.70, IBS = 0.12) and DM (C-statistic = 0.70, IBS = 0.08) while the random forest model displayed better performance for LR (C-statistic = 0.76, IBS = 0.07). We conclude that the ML-based prognostic model can aid clinicians in quantifying prognosis and determining effective treatment strategies, thereby improving favorable outcomes in HNSCC patients.

2.
Phys Med Biol ; 69(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530298

RESUMO

Objective. Accurate and reproducible tumor delineation on positron emission tomography (PET) images is required to validate predictive and prognostic models based on PET radiomic features. Manual segmentation of tumors is time-consuming whereas semi-automatic methods are easily implementable and inexpensive. This study assessed the reliability of semi-automatic segmentation methods over manual segmentation for tumor delineation in head and neck squamous cell carcinoma (HNSCC) PET images.Approach. We employed manual and six semi-automatic segmentation methods (just enough interaction (JEI), watershed, grow from seeds (GfS), flood filling (FF), 30% SUVmax and 40%SUVmax threshold) using 3D slicer software to extract 128 radiomic features from FDG-PET images of 100 HNSCC patients independently by three operators. We assessed the distributional properties of all features and considered 92 log-transformed features for subsequent analysis. For each paired comparison of a feature, we fitted a separate linear mixed effect model using the method (two levels; manual versus one semi-automatic method) as a fixed effect and the subject and the operator as the random effects. We estimated different statistics-the intraclass correlation coefficient agreement (aICC), limits of agreement (LoA), total deviation index (TDI), coverage probability (CP) and coefficient of individual agreement (CIA)-to evaluate the agreement between the manual and semi-automatic methods.Main results. Accounting for all statistics across 92 features, the JEI method consistently demonstrated acceptable agreement with the manual method, with median values of aICC = 0.86, TDI = 0.94, CP = 0.66, and CIA = 0.91.Significance. This study demonstrated that JEI method is a reliable semi-automatic method for tumor delineation on HNSCC PET images.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Reprodutibilidade dos Testes , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
3.
Cancer Med ; 12(15): 16181-16194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353996

RESUMO

BACKGROUND: Positron emission tomography (PET) images of head and neck squamous cell carcinoma (HNSCC) patients can assess the functional and biochemical processes at cellular levels. Therefore, PET radiomics-based prediction and prognostic models have the potentials to understand tumour heterogeneity and assist clinicians with diagnosis, prognosis and management of the disease. We conducted a systematic review of published modelling information to evaluate the usefulness of PET radiomics in the prediction and prognosis of HNSCC patients. METHODS: We searched bibliographic databases (MEDLINE, Embase, Web of Science) from 2010 to 2021 and considered 31 studies with pre-defined inclusion criteria. We followed the CHARMS checklist for data extraction and performed quality assessment using the PROBAST tool. We conducted a meta-analysis to estimate the accuracy of the prediction and prognostic models using the diagnostic odds ratio (DOR) and average C-statistic, respectively. RESULTS: Manual segmentation method followed by 40% of the maximum standardised uptake value (SUVmax ) thresholding is a commonly used approach. The area under the receiver operating curves of externally validated prediction models ranged between 0.60-0.87, 0.65-0.86 and 0.62-0.75 for overall survival, distant metastasis and recurrence, respectively. Most studies highlighted an overall high risk of bias (outcome definition, statistical methodologies and external validation of models) and high unclear concern in terms of applicability. The meta-analysis showed the estimated pooled DOR of 6.75 (95% CI: 4.45, 10.23) for prediction models and the C-statistic of 0.71 (95% CI: 0.67, 0.74) for prognostic models. CONCLUSIONS: Both prediction and prognostic models using clinical variables and PET radiomics demonstrated reliable accuracy for detecting adverse outcomes in HNSCC, suggesting the prospect of PET radiomics in clinical settings for diagnosis, prognosis and management of HNSCC patients. Future studies of prediction and prognostic models should emphasise the quality of reporting, external model validation, generalisability to real clinical scenarios and enhanced reproducibility of results.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Prognóstico , Reprodutibilidade dos Testes , Tomografia por Emissão de Pósitrons/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Fluordesoxiglucose F18
4.
Int J Qual Health Care ; 33(1)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33306102

RESUMO

OBJECTIVE: To explore differences in position emission tomography-computed tomography (PET-CT) service provision internationally to further understand the impact variation may have upon cancer services. To identify areas of further exploration for researchers and policymakers to optimize PET-CT services and improve the quality of cancer services. DESIGN: Comparative analysis using data based on pre-defined PET-CT service metrics from PET-CT stakeholders across seven countries. This was further informed via document analysis of clinical indication guidance and expert consensus through round-table discussions of relevant PET-CT stakeholders. Descriptive comparative analyses were produced on use, capacity and indication guidance for PET-CT services between jurisdictions. SETTING: PET-CT services across 21 jurisdictions in seven countries (Australia, Denmark, Canada, Ireland, New Zealand, Norway and the UK). PARTICIPANTS: None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): None. RESULTS: PET-CT service provision has grown over the period 2006-2017, but scale of increase in capacity and demand is variable. Clinical indication guidance varied across countries, particularly for small-cell lung cancer staging and the specific acknowledgement of gastric cancer within oesophagogastric cancers. There is limited and inconsistent data capture, coding, accessibility and availability of PET-CT activity across countries studied. CONCLUSIONS: Variation in PET-CT scanner quantity, acquisition over time and guidance upon use exists internationally. There is a lack of routinely captured and accessible PET-CT data across the International Cancer Benchmarking Partnership countries due to inconsistent data definitions, data linkage issues, uncertain coverage of data and lack of specific coding. This is a barrier in improving the quality of PET-CT services globally. There needs to be greater, richer data capture of diagnostic and staging tools to facilitate learning of best practice and optimize cancer services.


Assuntos
Benchmarking , Neoplasias , Austrália , Canadá , Humanos , Irlanda , Neoplasias/diagnóstico por imagem , Nova Zelândia , Noruega , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA