Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865222

RESUMO

Neuro-oncological surgery is the primary brain cancer treatment, yet it faces challenges with gliomas due to their invasiveness and the need to preserve neurological function. Hence, radical resection is often unfeasible, highlighting the importance of precise tumor margin delineation to prevent neurological deficits and improve prognosis. Imaging Mueller polarimetry, an effective modality in various organ tissues, seems a promising approach for tumor delineation in neurosurgery. To further assess its use, we characterized the polarimetric properties by analysing 45 polarimetric measurements of 27 fresh brain tumor samples, including different tumor types with a strong focus on gliomas. Our study integrates a wide-field imaging Mueller polarimetric system and a novel neuropathology protocol, correlating polarimetric and histological data for accurate tissue identification. An image processing pipeline facilitated the alignment and overlay of polarimetric images and histological masks. Variations in depolarization values were observed for grey and white matter of brain tumor tissue, while differences in linear retardance were seen only within white matter of brain tumor tissue. Notably, we identified pronounced optical axis azimuth randomization within tumor regions. This study lays the foundation for machine learning-based brain tumor segmentation algorithms using polarimetric data, facilitating intraoperative diagnosis and decision making.

2.
Int J Comput Assist Radiol Surg ; 19(6): 1033-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503943

RESUMO

PURPOSE: Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice. METHODS: A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities. Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the assumption of pseudo-Gaussian polarimetric acquisition noise. RESULTS: The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased human brain samples in different conditions. Accuracy and image quality indices showed significant ( p < 0.05 ) improvements on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The computational time is reported for the end-to-end processing. CONCLUSION: The end-to-end image processing achieved real-time performance for a localised field of view ( ≈ 6.5 mm 2 ). The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.


Assuntos
Processamento de Imagem Assistida por Computador , Procedimentos Neurocirúrgicos , Humanos , Procedimentos Neurocirúrgicos/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia
3.
Neurophotonics ; 10(2): 025009, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37234458

RESUMO

Significance: Imaging Mueller polarimetry (IMP) appears as a promising technique for real-time delineation of healthy and neoplastic tissue during neurosurgery. The training of machine learning algorithms used for the image post-processing requires large data sets typically derived from the measurements of formalin-fixed brain sections. However, the success of the transfer of such algorithms from fixed to fresh brain tissue depends on the degree of alterations of polarimetric properties induced by formalin fixation (FF). Aim: Comprehensive studies were performed on the FF induced changes in fresh pig brain tissue polarimetric properties. Approach: Polarimetric properties of pig brain were assessed in 30 coronal thick sections before and after FF using a wide-field IMP system. The width of the uncertainty region between gray and white matter was also estimated. Results: The depolarization increased by 5% in gray matter and remained constant in white matter following FF, whereas the linear retardance decreased by 27% in gray matter and by 28% in white matter after FF. The visual contrast between gray and white matter and fiber tracking remained preserved after FF. Tissue shrinkage induced by FF did not have a significant effect on the uncertainty region width. Conclusions: Similar polarimetric properties were observed in both fresh and fixed brain tissues, indicating a high potential for transfer learning.

4.
Biomed Opt Express ; 14(5): 2400-2415, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206128

RESUMO

During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36998700

RESUMO

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

6.
Front Neurosci ; 13: 1182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749678

RESUMO

It is a general assumption in deep learning that more training data leads to better performance, and that models will learn to generalize well across heterogeneous input data as long as that variety is represented in the training set. Segmentation of brain tumors is a well-investigated topic in medical image computing, owing primarily to the availability of a large publicly-available dataset arising from the long-running yearly Multimodal Brain Tumor Segmentation (BraTS) challenge. Research efforts and publications addressing this dataset focus predominantly on technical improvements of model architectures and less on properties of the underlying data. Using the dataset and the method ranked third in the BraTS 2018 challenge, we performed experiments to examine the impact of tumor type on segmentation performance. We propose to stratify the training dataset into high-grade glioma (HGG) and low-grade glioma (LGG) subjects and train two separate models. Although we observed only minor gains in overall mean dice scores by this stratification, examining case-wise rankings of individual subjects revealed statistically significant improvements. Compared to a baseline model trained on both HGG and LGG cases, two separately trained models led to better performance in 64.9% of cases (p < 0.0001) for the tumor core. An analysis of subjects which did not profit from stratified training revealed that cases were missegmented which had poor image quality, or which presented clinically particularly challenging cases (e.g., underrepresented subtypes such as IDH1-mutant tumors), underlining the importance of such latent variables in the context of tumor segmentation. In summary, we found that segmentation models trained on the BraTS 2018 dataset, stratified according to tumor type, lead to a significant increase in segmentation performance. Furthermore, we demonstrated that this gain in segmentation performance is evident in the case-wise ranking of individual subjects but not in summary statistics. We conclude that it may be useful to consider the segmentation of brain tumors of different types or grades as separate tasks, rather than developing one tool to segment them all. Consequently, making this information available for the test data should be considered, potentially leading to a more clinically relevant BraTS competition.

7.
Med Image Anal ; 44: 228-244, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29289703

RESUMO

Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel- and patient-level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem , Algoritmos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Magn Reson Med ; 78(6): 2399-2405, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28169457

RESUMO

PURPOSE: To improve the efficiency of the labeling task in automatic quality control of MR spectroscopy imaging data. METHODS: 28'432 short and long echo time (TE) spectra (1.5 tesla; point resolved spectroscopy (PRESS); repetition time (TR)= 1,500 ms) from 18 different brain tumor patients were labeled by two experts as either accept or reject, depending on their quality. For each spectrum, 47 signal features were extracted. The data was then used to run several simulations and test an active learning approach using uncertainty sampling. The performance of the classifiers was evaluated as a function of the number of patients in the training set, number of spectra in the training set, and a parameter α used to control the level of classification uncertainty required for a new spectrum to be selected for labeling. RESULTS: The results showed that the proposed strategy allows reductions of up to 72.97% for short TE and 62.09% for long TE in the amount of data that needs to be labeled, without significant impact in classification accuracy. Further reductions are possible with significant but minimal impact in performance. CONCLUSION: Active learning using uncertainty sampling is an effective way to increase the labeling efficiency for training automatic quality control classifiers. Magn Reson Med 78:2399-2405, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Algoritmos , Área Sob a Curva , Artefatos , Simulação por Computador , Humanos , Modelos Estatísticos , Controle de Qualidade , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
NMR Biomed ; 29(5): 563-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071355

RESUMO

MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1)H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented in jMRUI's SpectrIm plugin.


Assuntos
Neoplasias Encefálicas/diagnóstico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Controle de Qualidade , Algoritmos , Área Sob a Curva , Automação , Humanos , Água
10.
Aviat Space Environ Med ; 76(8): 733-8, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16110688

RESUMO

INTRODUCTION: Failure to effectively regulate BP and cerebral perfusion during high-G aircraft maneuvering may contribute to reduced performance in pilots due to the fact that perfusion to the peripheral cerebral tissues may not be adequate to support the mental demands of flight. Therefore, a critical area of investigation is the study of cortical tissue oxygenation responses to +Gz acceleration. METHODS: Two experiments were used to build two sections of a cerebral oxygen saturation (rSo2) model. Experiment 1: Six subjects participated in the study. A cerebral oximeter (gold standard) provided rSo2. Acceleration profiles (subjects relaxed) included a 0.1 G x s(-1) G onset to central light loss (CLL) and a 3 G x s(-1) onset to a G level that was 1 Gz above CLL to an endpoint of G-LOC. Experiment 2: There were 12 subjects (with G protection) who participated in this study. The rSo2 data were collected during five different simulated aerial combat maneuvers. A model was created that read the Gz profile as input and calculated changes in rSo2. The correlation coefficient, linear best-fit slope, and mean percent error were calculated to determine agreement. RESULTS: The average value for the correlation coefficients, linear best-fit slopes, and mean percent errors for the unprotected subjects were 0.79, 0.87, and 6.08, respectively. These values for the protected subjects were 5 G (0.994, 1.011, 0.384), 6 G (0.994, 0.909, 0.811), 7 G (0.986, 1.061, 0.692), 8 G (0.969, 1.016, 1.300), and 9 G (0.994, 0.979, 0.558), respectively. DISCUSSION: The model is a good predictor of rSo2 values for protected and unprotected subjects under +Gz stress.


Assuntos
Encéfalo/irrigação sanguínea , Simulação por Computador , Hipergravidade , Oxigênio/análise , Adulto , Aeronaves , Feminino , Previsões , Trajes Gravitacionais , Humanos , Masculino , Oximetria , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA