RESUMO
ABSTRACT: Cardiopulmonary bypass (CPB), an extracorporeal method necessary for the surgical correction of complex congenital heart defects, incites significant inflammation that affects vascular function. These changes are associated with alterations in cellular metabolism that promote energy production to deal with this stress. Utilizing laser Doppler perfusion monitoring coupled with iontophoresis in patients undergoing corrective heart surgery, we hypothesized that temporal, untargeted metabolomics could be performed to assess the link between metabolism and vascular function. Globally, we found 2,404 unique features in the plasma of patients undergoing CPB. Metabolites related to arginine biosynthesis were the most altered by CPB. Correlation of metabolic profiles with endothelial-dependent (acetylcholine [ACh]) or endothelial-independent (sodium nitroprusside [SNP]) vascular reactivity identified purine metabolism being most consistently associated with either vascular response. Concerning ACh-mediated responses, acetylcarnitine levels were most strongly associated, while glutamine levels were associated with both ACh and SNP responsiveness. These data provide insight into the metabolic landscape of children undergoing CPB for corrective heart surgery and provide detail into how these metabolites relate to physiological aberrations in vascular function.
Assuntos
Ponte Cardiopulmonar , Endotélio Vascular , Metabolômica , Humanos , Masculino , Feminino , Endotélio Vascular/metabolismo , Acetilcolina , Lactente , Pré-Escolar , Nitroprussiato/farmacologia , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/sangue , CriançaRESUMO
Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.
Assuntos
Proteínas de Bactérias , Helicobacter pylori , Taurina , Taurina/metabolismo , Taurina/análogos & derivados , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , MetabolômicaRESUMO
Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.
Assuntos
Glutamina , Macrófagos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Função Ventricular Esquerda , Animais , Glutamina/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Função Ventricular Esquerda/efeitos dos fármacos , Camundongos , Remodelação Ventricular/efeitos dos fármacos , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/imunologia , Inflamação/metabolismo , Inflamação/patologia , Metabolismo Energético/efeitos dos fármacosRESUMO
Introduction: We successfully developed a broad spectrum of patient-derived endocrine organoids (PDO) from benign and malignant neoplasms of thyroid, parathyroid, and adrenal glands. In this study, we employed functionally intact parathyroid PDOs from benign parathyroid tissues to study primary hyperparathyroidism (PHPT), a common endocrine metabolic disease. As proof of concept, we examined the utility of parathyroid PDOs for bioenergetic and metabolic screening and assessed whether parathyroid PDO metabolism recapitulated matched PHPT tissues. Methods: Our study methods included a fine-needle aspiration (FNA)-based technique to establish parathyroid PDOs from human PHPT tissues (n=6) in semi-solid culture conditions for organoid formation, growth, and proliferation. Mass spectrometry metabolomic analysis of PHPT tissues and patient-matched PDOs, and live cell bioenergetic profiling of parathyroid PDOs with extracellular flux analyses, were performed. Functional analysis cryopreserved and re-cultured parathyroid PDOs for parathyroid hormone (PTH) secretion was performed using ELISA hormone assays. Results and discussion: Our findings support both the feasibility of parathyroid PDOs for metabolic and bioenergetic profiling and reinforce metabolic recapitulation of PHPT tissues by patient-matched parathyroid PDOs. Cryopreserved parathyroid PDOs exhibited preserved, rapid, and sustained secretory function after thawing. In conclusion, successful utilization of parathyroid PDOs for metabolic profiling further affirms the feasibility of promising endocrine organoid platforms for future metabolic studies and broader multiplatform and translational applications for therapeutic advancements of parathyroid and other endocrine applications.
Assuntos
Glândulas Paratireoides , Glândula Tireoide , Humanos , Glândulas Paratireoides/metabolismo , Biópsia por Agulha Fina/métodos , OrganoidesRESUMO
INTRODUCTION: Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED: Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION: Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Assuntos
Química Clínica , Espectrometria de Mobilidade Iônica , Biomarcadores , Cromatografia Líquida/métodos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodosRESUMO
Here we report the use of a microfluidic system to assess the differential metabolomics of murine embryos cultured with endometrial cells-conditioned media (CM). Groups of 10, 1-cell murine B6C3F1 × B6D2F1 embryos were cultured in the microfluidic device. To produce CM, mouse uterine epithelial cells were cultured in potassium simplex optimized medium (KSOM) for 24 h. Media samples were collected from devices after 5 days of culture with KSOM (control) and CM, analyzed by reverse phase liquid chromatography and untargeted positive ion mode mass spectrometry analysis. Blastocyst rates were significantly higher (p < 0.05) in CM (71.8%) compared to control media (54.6%). We observed significant upregulation of 341 compounds and downregulation of 214 compounds in spent media from CM devices when compared to control. Out of these, 353 compounds were identified showing a significant increased abundance of metabolites involved in key metabolic pathways (e.g., arginine, proline and pyrimidine metabolism) in the CM group, suggesting a beneficial effect of CM on embryo development. The metabolomic study carried out in a microfluidic environment confirms our hypothesis on the potential of uterine epithelial cells to enhance blastocyst development. Further investigations are required to highlight specific pathways involved in embryo development and implantation.
Assuntos
Blastocisto/metabolismo , Técnicas de Cultura Embrionária/instrumentação , Células Epiteliais/metabolismo , Dispositivos Lab-On-A-Chip , Metaboloma , Metabolômica , Técnicas Analíticas Microfluídicas/instrumentação , Comunicação Parácrina , Útero/metabolismo , Animais , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Desenvolvimento Embrionário , Feminino , Espectrometria de Massas , Camundongos , Transdução de Sinais , Útero/citologiaRESUMO
The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.
Tumours form when cells lose control of their growth. Usually, cells produce signals that control how much and how often they divide. But if these signals become faulty, cells may grow too quickly or multiply too often. For example, a group of proteins known as MYC proteins activate growth genes in a cell, but too much of these proteins causes cells to grow uncontrollably. With one third of all cancer deaths linked to excess MYC proteins, these molecules could be key targets for anti-cancer drugs. However, current treatments fail to target these proteins. One option for treating cancers linked to MYC proteins could be to target proteins that work alongside MYC proteins, such as the protein HCF-1, which can attach to MYC proteins. To test if HCF-1 could be a potential drug target, Popay et al. first studied how HCF-1 and MYC proteins interacted using specific cancer cells grown in the laboratory. This revealed that when the two proteins connected, they activated genes that trigger rapid cell growth. When these cancer cells were then injected into mice, tumours quickly grew. However, when the MYC and HCF-1 attachments in the cancer cells were disrupted, the tumours shrunk. This suggests that if anti-cancer drugs were able to target HCF-1 proteins, they could potentially reduce or even reverse the growth of tumours. While further research is needed to identify drug candidates, these findings reveal a promising target for treating tumours that stem from over-abundant MYC proteins.
Assuntos
Expressão Gênica , Genes Mitocondriais , Fator C1 de Célula Hospedeira/genética , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/genética , Ribossomos/fisiologia , Animais , Linfoma de Burkitt , Feminino , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
Melanomas harboring BRAF mutations can be treated with BRAF inhibitors (BRAFi), but responses are varied and tumor recurrence is inevitable. Here we used an integrative approach of experimentation and mathematical flux balance analyses in BRAF-mutated melanoma cells to discover that elevated antioxidant capacity is linked to BRAFi sensitivity in melanoma cells. High levels of antioxidant metabolites in cells with reduced BRAFi sensitivity confirmed this conclusion. By extending our analyses to other melanoma subtypes in The Cancer Genome Atlas, we predict that elevated redox capacity is a general feature of melanomas, not previously observed. We propose that redox vulnerabilities could be exploited for therapeutic benefits and identify unsuspected combination targets to enhance the effects of BRAFi in any melanoma, regardless of mutational status. SIGNIFICANCE: An integrative bioinformatics, flux balance analysis, and experimental approach identify targetable redox vulnerabilities and show the potential for modulation of cancer antioxidant defense to augment the benefits of existing therapies in melanoma.
Assuntos
Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Glutationa/metabolismo , Humanos , NADP/metabolismo , NADPH Oxidase 5/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
This article provides a reusable dataset describing detailed phenotypic and associated clinical parameters in n=303 clinical isolates of urinary Escherichia coli collected at Vanderbilt University Medical Center. De-identified clinical data collected with each isolate are detailed here and correlated to biofilm abundance and metabolomics data. Biofilm-abundance data were collected for each isolate under different in vitro conditions along with datasets quantifying biofilm abundance of each isolate under different conditions. Metabolomics data were collected from a subset of bacterial strains isolated from uncomplicated cases of cystitis or cases with no apparent symptoms accompanying colonization. For more insight, please see "Defining a Molecular Signature for Uropathogenic versus Urocolonizing Escherichia coli: The Status of the Field and New Clinical Opportunities" [1].
RESUMO
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Graxos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Acil-CoA Desidrogenase de Cadeia Longa/biossíntese , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Regulação para Baixo , Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Mutantes , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologiaRESUMO
Urinary tract infections (UTIs) represent a major burden across the population, although key facets of their pathophysiology and host interaction remain unclear. Escherichia coli epitomizes these obstacles: this gram-negative bacterial species is the most prevalent agent of UTIs worldwide and can also colonize the urogenital tract in a phenomenon known as asymptomatic bacteriuria (ASB). Unfortunately, at the level of the individual E. coli strains, the relationship between UTI and ASB is poorly defined, confounding our understanding of microbial pathogenesis and strategies for clinical management. Unlike diarrheagenic pathotypes of E. coli, the definition of uropathogenic E. coli (UPEC) remains phenomenologic, without conserved phenotypes and known genetic determinants that rigorously distinguish UTI- and ASB-associated strains. This article provides a cross-disciplinary review of the current issues from interrelated mechanistic and diagnostic perspectives and describes new opportunities by which clinical resources can be leveraged to overcome molecular challenges. Specifically, we present our work harnessing a large collection of patient-derived isolates to identify features that do (and do not) distinguish UTI- from ASB-associated E. coli strains. Analyses of biofilm formation, previously reported to be higher in ASB strains, revealed extensive phenotypic heterogeneity that did not correlate with symptomatology. However, metabolomic experiments revealed distinct signatures between ASB and cystitis isolates, including in the purine pathway (previously shown to be critical for intracellular survival during acute infection). Together, these studies demonstrate how large-scale, wild-type approaches can help dissect the physiology of colonization versus infection, suggesting that the molecular definition of UPEC may rest at the level of global bacterial metabolism.
Assuntos
Infecções por Escherichia coli/microbiologia , Metabolômica/métodos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biofilmes , Cistite/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
RATIONALE: Commercial-grade polymer synthesis is performed via melt polymerization, which leads to polydispersion. The work reported herein provides a synthetic strategy to produce mono-dispersive polyurethane oligomers and an analytical strategy to distinguish these oligomers, providing chemists with the tools necessary to synthesize and identify specific polymer structures that exhibit a desired property. METHODS: Three isomeric poly(ethylene glycol)-polyurethane (PEG-PUR) oligomers were synthesized and analyzed via flow-injection ion mobility mass spectrometry (IM-MS). Each polymer oligomer was injected and run independently via flow injection at 100 µLâ¢min-1 and analyzed in positive ion mode on a drift tube quadrupole time-of-flight (QTOF) instrument. Mobility measurements were determined using a single-field approach. For tandem mass spectrometry (MS/MS) experiments, the sodium-adducted singly charged precursor ion was isolated in the quadrupole and subjected to a range of collision energies. RESULTS: In MS experiments, both +1 and +2 sodium-adducted species were observed for each oligomer at m/z 837.4 and 430.2, respectively. When isolated and fragmented via MS/MS, the +1 precursor yielded distinct product ions for each of the three isomeric oligomers. Fragmentation generally occurred at urethane linkages via 1,3- and 1,5-H shift mechanisms. IM was also used to distinguish the three isomers, with greater IM separation observed for the +2 versus the +1 species. CONCLUSIONS: Mono-disperse PEG-PUR oligomers were synthesized and analyzed. Although the polymeric oligomers analyzed in this study are quite small and structurally simple, this work serves as a model system for the synthesis and structural characterization of larger, more complex block copolymers.
RESUMO
Obesity and obesity-related disorders are a global epidemic affecting over 10% of the world's population. Treatment of these diseases has become increasingly challenging and expensive. The most effective and durable treatment for Class III obesity (body mass index ≥35 kg/m2) is bariatric surgery, namely, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy. These procedures are associated with increased circulating bile acids, molecules that not only facilitate intestinal fat absorption but are also potent hormones regulating numerous metabolic pathways. We recently reported on a novel surgical procedure in mice, termed distal gallbladder bile diversion to the ileum (GB-ILdist), that emulates the altered bile flow after RYGB without other manipulations of gastrointestinal anatomy. GB-ILdist improves oral glucose tolerance in mice made obese with high-fat diet. This is accompanied by fat malabsorption and weight loss, which complicates studying the role of elevated circulating bile acids in metabolic control. A less aggressive surgery in which the gallbladder bile is diverted to the proximal ileum, termed GB-ILprox, also improves glucose control but is not accompanied by fat malabsorption. To better understand the differential effects achieved by these bile diversion procedures, an untargeted ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) method was optimized for fecal samples derived from mice that have undergone bile diversion surgery. Utilizing the UPLC-IM-MS method, we were able to identify dysregulation of bile acids, short-chain fatty acids, and cholesterol derivatives that contribute to the differential metabolism resulting from these surgeries.
Assuntos
Anastomose Cirúrgica/efeitos adversos , Ácidos e Sais Biliares/análise , Cromatografia Líquida/métodos , Microbioma Gastrointestinal/fisiologia , Espectrometria de Massas/métodos , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/cirurgia , Colesterol/análogos & derivados , Colesterol/análise , Colesterol/metabolismo , Duodeno/cirurgia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Íleo/cirurgia , Jejuno/cirurgia , Masculino , Camundongos Endogâmicos C57BLRESUMO
Zinc (Zn) is an essential trace metal required for all forms of life, but is toxic at high concentrations. While the toxic effects of high levels of Zn are well documented, the mechanism of cell death appears to vary based on the study and concentration of Zn. Zn has been proposed as an anti-cancer treatment against non-small cell lung cancer (NSCLC). The goal of this analysis was to determine the effects of Zn on metabolism and cell death in A549 cells. Here, high throughput multi-omics analysis identified the molecular effects of Zn intoxication on the proteome, metabolome, and transcriptome of A549 human NSCLC cells after 5 min to 24 h of Zn exposure. Multi-omics analysis combined with additional experimental evidence suggests Zn intoxication induces ferroptosis, an iron and lipid peroxidation-dependent programmed cell death, demonstrating the utility of multi-omics analysis to identify cellular response to intoxicants.
Assuntos
Ferroptose/efeitos dos fármacos , Pulmão/patologia , Zinco/toxicidade , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Genômica , Humanos , NAD/biossíntese , Necrose , Ligação Proteica/efeitos dos fármacos , Fatores de TempoRESUMO
In this study, a commercial uniform field drift tube ion mobility-mass spectrometer (IM-MS) was utilized to measure the gas-phase conformational populations of three well-studied proteins: ubiquitin (8566 Da), cytochrome c (12,359 Da), and myoglobin in both apo and holo forms (16,951 and 17,567 Da, respectively) in order to evaluate the use of this technology for broadscale structural proteomics applications. Proteins were electrosprayed from either acidic organic (pH ~3) or aqueous buffered (pH ~6.6) solution phase conditions, which generated a wide range of cation charge states corresponding to both extended (unfolded) and compact (folded) gas-phase conformational populations. Corresponding collision cross section (CCS) measurements were compiled for significant ion mobility peak features observed at each charge state in order to map the conformational landscapes of these proteins in both helium and nitrogen drift gases. It was observed that the conformational landscapes were similar in both drift gases, with differences being attributed primarily to ion heating during helium operation due to the necessity of operating the instrument with higher pressure differentials. Higher resolving powers were observed in nitrogen, which allowed for slightly better structural resolution of closely-spaced conformer populations. The instrumentation was found to be particularly adept at measuring low abundance conformers which are only present under gentle conditions which minimize ion heating. This work represents the single largest ion mobility CCS survey published to date for these three proteins with 266 CCS values and 117 ion mobility spectra, many of which have not been previously reported.
RESUMO
The interaction of cancer cells with the stromal cells and matrix in the tumor microenvironment plays a key role in progression to metastasis. A better understanding of the mechanisms underlying these interactions would aid in developing new therapeutic approaches to inhibit this progression. Here, we describe the fabrication of a simple microfluidic bioreactor capable of recapitulating the three-dimensional breast tumor microenvironment. Cancer cell spheroids, fibroblasts, and endothelial cells co-cultured in this device create a robust microenvironment suitable for studying in real time the migration of cancer cells along matrix structures laid down by fibroblasts within the 3D tumor microenvironment. This system allows for ready evaluation of response to targeted therapy.
RESUMO
BACKGROUND: Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches-whether in vivo or in vitro-have often been only snapshots of this complex web of interactions. METHODS: We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1ß, TNF-α, and MCP1,2. RESULTS: In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. CONCLUSIONS: Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.
Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Claudina-5/metabolismo , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/farmacologia , Dispositivos Lab-On-A-Chip , Lipopolissacarídeos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.
Assuntos
Metabolismo dos Lipídeos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Adolescente , Adulto , Ácidos Graxos/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Pessoa de Meia-Idade , Adulto JovemRESUMO
Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values.
RESUMO
Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments.