Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
JCO Precis Oncol ; 7: e2200720, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196218

RESUMO

PURPOSE: Homologous recombination DNA repair deficiency (HRD) is a therapeutic biomarker for sensitivity to platinum and poly(ADP-ribose) polymerase inhibitor therapies in breast and ovarian cancers. Several molecular phenotypes and diagnostic strategies have been developed to assess HRD; however, their clinical implementation remains both technically challenging and methodologically unstandardized. METHODS: We developed and validated an efficient and cost-effective strategy for HRD determination on the basis of calculation of a genome-wide loss of heterozygosity (LOH) score through targeted, hybridization capture and next-generation DNA sequencing augmented with 3,000 common, polymorphic single-nucleotide polymorphism (SNP) sites distributed genome-wide. This approach requires minimal sequence reads and can be readily integrated into targeted gene capture workflows already in use for molecular oncology. We interrogated 99 ovarian neoplasm-normal pairs using this method and compared results with patient mutational genotypes and orthologous predictors of HRD derived from whole-genome mutational signatures. RESULTS: LOH scores of ≥11% had >86% sensitivity for identifying tumors with HRD-causing mutations in an independent validation set (90.6% sensitivity for all specimens). We found strong agreement of our analytic approach with genome-wide mutational signature assays for determining HRD, yielding an estimated 96.7% sensitivity and 50% specificity. We observed poor concordance with mutational signatures inferred using only mutations detected by the targeted gene capture panel, suggesting inadequacy of the latter approach. LOH score did not significantly correlate with treatment outcomes. CONCLUSION: Targeted sequencing of genome-wide polymorphic SNP sites can be used to infer LOH events and subsequently diagnose HRD in ovarian tumors. The methods presented here are readily generalizable to other targeted gene oncology assays and could be adapted for HRD diagnosis in other tumor types.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Reparo de DNA por Recombinação/genética , Recombinação Homóloga/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Mutação , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
2.
Am J Respir Crit Care Med ; 203(9): 1127-1137, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296290

RESUMO

Rationale:Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/microbiologia , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Adolescente , Antibacterianos/uso terapêutico , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Epidemiologia Molecular , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/genética , Infecções Estafilocócicas/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-31285231

RESUMO

Inhaled aztreonam is increasingly used for chronic Pseudomonas aeruginosa suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy in vivo We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being ftsI and ampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutant ampC alleles and performed artificial evolution of ampC for maximal activity against aztreonam. We found that naturally occurring ampC mutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other ß-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selection in vivo and in vitro, show that ampC has a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitness in vivo.


Assuntos
Proteínas de Bactérias/genética , Fibrose Cística/tratamento farmacológico , Peptidoglicano Glicosiltransferase/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Administração por Inalação , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Aztreonam/metabolismo , Aztreonam/uso terapêutico , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Elementos de DNA Transponíveis , Expressão Gênica , Humanos , Mutação , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Seleção Genética
4.
Sci Transl Med ; 10(460)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257953

RESUMO

The lack of new antibiotics is among the most critical challenges facing medicine. The problem is particularly acute for Gram-negative bacteria. An unconventional antibiotic strategy is to target bacterial nutrition and metabolism. The metal gallium can disrupt bacterial iron metabolism because it substitutes for iron when taken up by bacteria. We investigated the antibiotic activity of gallium ex vivo, in a mouse model of airway infection, and in a phase 1 clinical trial in individuals with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa airway infections. Our results show that micromolar concentrations of gallium inhibited P. aeruginosa growth in sputum samples from patients with CF. Ex vivo experiments indicated that gallium inhibited key iron-dependent bacterial enzymes and increased bacterial sensitivity to oxidants. Furthermore, gallium resistance developed slowly, its activity was synergistic with certain antibiotics, and gallium did not diminish the antibacterial activity of host macrophages. Systemic gallium treatment showed antibiotic activity in murine lung infections. In addition, systemic gallium treatment improved lung function in people with CF and chronic P. aeruginosa lung infection in a preliminary phase 1 clinical trial. These findings raise the possibility that human infections could be treated by targeting iron metabolism or other nutritional vulnerabilities of bacterial pathogens.


Assuntos
Gálio/uso terapêutico , Ferro/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia , Adolescente , Adulto , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Fibrose Cística/fisiopatologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Gálio/farmacocinética , Gálio/farmacologia , Genes Bacterianos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Pessoa de Meia-Idade , Mutagênese , Mutação/genética , Oxidantes/toxicidade , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Respiratórias/fisiopatologia , Escarro/microbiologia , Adulto Jovem
5.
mBio ; 8(5)2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089424

RESUMO

While much attention has been focused on acquired antibiotic resistance genes, chromosomal mutations may be most important in chronic infections where isolated, persistently infecting lineages experience repeated antibiotic exposure. Here, we used experimental evolution and whole-genome sequencing to investigate chromosomally encoded mutations causing aztreonam resistance in Pseudomonas aeruginosa and characterized the secondary consequences of resistance development. We identified 19 recurrently mutated genes associated with aztreonam resistance. The most frequently observed mutations affected negative transcriptional regulators of the mexAB-oprM efflux system and the target of aztreonam, ftsI While individual mutations conferred modest resistance gains, high-level resistance (1,024 µg/ml) was achieved through the accumulation of multiple variants. Despite being largely stable when strains were passaged in the absence of antibiotics, aztreonam resistance was associated with decreased in vitro growth rates, indicating an associated fitness cost. In some instances, evolved aztreonam-resistant strains exhibited increased resistance to structurally unrelated antipseudomonal antibiotics. Surprisingly, strains carrying evolved mutations which affected negative regulators of mexAB-oprM (mexR and nalD) demonstrated enhanced virulence in a murine pneumonia infection model. Mutations in these genes, and other genes that we associated with aztreonam resistance, were common in P. aeruginosa isolates from chronically infected patients with cystic fibrosis. These findings illuminate mechanisms of P. aeruginosa aztreonam resistance and raise the possibility that antibiotic treatment could inadvertently select for hypervirulence phenotypes.IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Evolução Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Animais , Cromossomos Bacterianos/genética , Doença Crônica , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Evolução Molecular Direcionada/métodos , Modelos Animais de Doenças , Aptidão Genética , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
6.
Pediatr Res ; 66(4): 455-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19581835

RESUMO

Cytokine profiles in amniotic fluid, cord serum, and tracheal aspirate of premature infants suggest a shift toward a proinflammatory state. Cytokines also contribute to the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesize that the initiating events for BPD are reflected in the placenta and propose that placental expression of cytokines provide a blueprint of events leading to BPD. This is a retrospective, case-controlled study of placental cytokines of premature infants with (n = 49) and without (n = 49) BPD, matched for gender, birth weight, and year of birth at Women and Infants Hospital between 2003 and 2005. Cytokine expression, including IL-6 and IL-10, was determined by immunohistochemistry in membrane rolls, umbilical cords, and placentas. IL-6 was similarly expressed in all tissues of infants with and without BPD. In contrast, anti-inflammatory cytokine IL-10 was less prominent in the placenta of patients with BPD compared with those without BPD. IL-10 expression in the villous trophoblast layer was associated with a reduced odds ratio of developing BPD (adjusted OR 0.08, 95% CI 0.01-0.70, p = 0.02). These results suggest that a placental balance between inflammatory and anti-inflammatory cytokines is crucial to normal lung organogenesis. Importantly, IL-10 seems to be protective against the development of BPD.


Assuntos
Displasia Broncopulmonar/imunologia , Interleucina-10/imunologia , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Placenta/imunologia , Displasia Broncopulmonar/patologia , Estudos de Casos e Controles , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-6/imunologia , Interleucina-8/imunologia , Pulmão/citologia , Pulmão/metabolismo , Masculino , Gravidez , Estudos Retrospectivos , Fator de Necrose Tumoral alfa/imunologia
7.
Early Hum Dev ; 77(1-2): 77-87, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15113634

RESUMO

Chorioamnionitis has been associated with periventricular leukomalacia (PVL) in very low birth weight (VLBW) infants. We examined the association between the pathological severity of chorioamnionitis and PVL in VLBW infants. Thirty-four VLBW infants with PVL and 34 control infants matched for gestational age without a diagnosis of PVL or intraventricular hemorrhage were obtained from the Women and Infants' Hospital of Rhode Island's Neonatal Follow-up Clinic database. Placental samples, including the amnion/chorion, chorionic plate, and umbilical cord, were examined microscopically. Statistical analysis included Mantel-Haenszel chi-square, and Student's t-test. Severe inflammation in the umbilical cord was observed in 53% of infants with PVL and 32% without PVL (p<0.05). Severe umbilical cord inflammation is one of the risk factors associated with the development of PVL in VLBW infants.


Assuntos
Corioamnionite/patologia , Recém-Nascido de muito Baixo Peso , Leucomalácia Periventricular/etiologia , Cordão Umbilical/patologia , Estudos de Casos e Controles , Corioamnionite/complicações , Feminino , Humanos , Recém-Nascido , Modelos Logísticos , Placenta/patologia , Gravidez , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA