Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 230: 114105, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065413

RESUMO

There is a pressing need for new drugs against tuberculosis (TB) to combat the growing resistance to current antituberculars. Herein a novel strategy is described for hit generation against promising TB targets involving X-ray crystallographic screening in combination with phenotypic screening. This combined approach (XP Screen) affords both a validation of target engagement as well as determination of in cellulo activity. The utility of this method is illustrated by way of an XP Screen against CYP121A1, a cytochrome P450 enzyme from Mycobacterium tuberculosis (Mtb) championed as a validated drug discovery target. A focused screening set was synthesized and tested by such means, with several members of the set showing promising activity against Mtb strain H37Rv. One compound was observed as an X-ray hit against CYP121A1 and showed improved activity against Mtb strain H37Rv under multiple assay conditions (pan-assay activity). Data obtained during X-ray crystallographic screening were utilized in a structure-based campaign to design a limited number of analogues (less than twenty), many of which also showed pan-assay activity against Mtb strain H37Rv. These included the benzo[b][1,4]oxazine derivative (MIC90 6.25 µM), a novel hit compound suitable as a starting point for a more involved hit to lead candidate medicinal chemistry campaign.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Desenho de Fármacos , Humanos , Tuberculose/tratamento farmacológico , Raios X
2.
J Biol Chem ; 292(12): 5128-5143, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28053093

RESUMO

The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peroxidases/metabolismo , Staphylococcaceae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos/metabolismo , Hidroxilação , Modelos Moleculares , Mutação , Peroxidases/química , Peroxidases/genética , Alinhamento de Sequência , Staphylococcaceae/química , Staphylococcaceae/genética , Staphylococcaceae/metabolismo , Especificidade por Substrato
3.
ACS Omega ; 2(8): 4705-4724, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023729

RESUMO

The cytochrome P450/P450 reductase fusion enzyme CYP505A30 from the thermophilic fungus Myceliophthora thermophila and its heme (P450) domain were expressed in Escherichia coli and purified using affinity, ion exchange, and size exclusion chromatography. CYP505A30 binds straight chain fatty acids (from ∼C10 to C20), with highest affinity for tridecanoic acid (KD = 2.7 µM). Reduced nicotinamide adenine dinucleotide phosphate is the preferred reductant for CYP505A30 (KM = 3.1 µM compared to 330 µM for reduced nicotinamide adenine dinucleotide in cytochrome c reduction). Electron paramagnetic resonance confirmed cysteine thiolate coordination of heme iron in CYP505A30 and its heme domain. Redox potentiometry revealed an unusually positive midpoint potential for reduction of the flavin adenine dinucleotide and flavin mononucleotide cofactors (E0' ∼ -118 mV), and a large increase in the CYP505A30 heme domain FeIII/FeII redox couple (ca. 230 mV) on binding arachidonic acid substrate. This switch brings the ferric heme iron potential into the same range as that of the reductase flavins. Multiangle laser light scattering analysis revealed CYP505A30's ability to dimerize, whereas the heme domain is monomeric. These data suggest CYP505A30 may function catalytically as a dimer (as described for Bacillus megaterium P450 BM3), and that binding interactions between CYP505A30 heme domains are not required for dimer formation. CYP505A30 catalyzed hydroxylation of straight chain fatty acids at the ω-1 to ω-3 positions, with a strong preference for ω-1 over ω-3 hydroxylation in the oxidation of dodecanoic and tetradecanoic acids (88 vs 2% products and 63 vs 9% products, respectively). CYP505A30 has important structural and catalytic similarities to P450 BM3 but distinct regioselectivity of lipid substrate oxidation with potential biotechnological applications.

4.
Sci Rep ; 6: 26628, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225995

RESUMO

Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a "full-length" 434 amino acid version (CYP144A1-FLV) and (ii) a "truncated" 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5'-untranslated region and Shine-Dalgarno ribosome binding site.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Mycobacterium tuberculosis , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Espectrometria de Massas , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Domínios Proteicos
5.
FEBS J ; 279(9): 1675-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22356105

RESUMO

The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 µM and K(m[NADH]) = 399.1 ± 52.1 µM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Oxirredutases/química , Proteínas de Bactérias/química , Clonagem Molecular , Cupriavidus/enzimologia , Cianetos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Herbicidas/metabolismo , Imidazóis/farmacologia , Proteínas Ferro-Enxofre/química , Lasers , NADP/metabolismo , Óxido Nítrico/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Rhodococcus/enzimologia , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Termodinâmica , Tiocarbamatos/metabolismo
6.
Biochemistry ; 50(14): 3014-24, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21381758

RESUMO

Cytochrome P450-mediated monooxygenation generally proceeds via a reactive ferryl intermediate coupled to a ligand radical [Fe(IV)═O]+• termed Compound I (Cpd I). The proximal cysteine thiolate ligand is a critical determinant of the spectral and catalytic properties of P450 enzymes. To explore the effect of an increased level of donation of electrons by the proximal ligand in the P450 catalytic cycle, we recently reported successful incorporation of SeCys into the active site of CYP119, a thermophilic cytochrome P450. Here we report relevant physical properties of SeCYP119 and a detailed analysis of the reaction of SeCYP119 with m-chloroperbenzoic acid. Our results indicate that the selenolate anion reduces rather than stabilizes Cpd I and also protects the heme from oxidative destruction, leading to the generation of a new stable species with an absorbance maximum at 406 nm. This stable intermediate can be returned to the normal ferric state by reducing agents and thiols, in agreement with oxidative modification of the selenolate ligand itself. Thus, in the seleno protein, the oxidative damage shifts from the heme to the proximal ligand, presumably because (a) an increased level of donation of electrons more efficiently quenches reactive species such as Cpd I and (b) the protection of the thiolate ligand provided by the protein active site structure is insufficient to shield the more oxidizable selenolate ligand.


Assuntos
Proteínas Arqueais/química , Clorobenzoatos/química , Sistema Enzimático do Citocromo P-450/química , Selenocisteína/química , Proteínas Arqueais/metabolismo , Clorobenzoatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Férricos/química , Compostos Ferrosos/química , Cinética , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria
7.
Biochim Biophys Acta ; 1814(1): 76-87, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20621636

RESUMO

CYP144 from Mycobacterium tuberculosis was expressed and purified. CYP144 demonstrates heme thiolate coordination in its ferric form, but the cysteinate is protonated to thiol in both the carbon monoxide-bound and ligand-free ferrous forms (forming P420 in the former). Tight binding of various azole drugs was shown, with affinity for miconazole (K(d)=0.98 µM), clotrimazole (0.37 µM) and econazole (0.78 µM) being highest. These azoles are also the trio with the highest affinity for the essential CYP121 and for the cholesterol oxidase CYP125 (essential for host infection), and have high potency as anti-mycobacterial drugs. Construction of a Mtb gene knockout strain demonstrated that CYP144 is not essential for growth in vitro. However the deletion strain was more sensitive to azole inhibition in culture suggesting an important role for CYP144 in cell physiology and/or in mediating azole resistance. The biophysical and genetic features of CYP144 are compared to those of other characterized Mtb P450s, identifying both commonality in properties (including thiolate protonation in ferrous P450s) and intriguing differences in thermodynamic and spectroscopic features. Our developing knowledge of the Mtb P450s has revealed unusual biochemistry and gene essentiality, highlighting their potential as drug targets in this human pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mycobacterium tuberculosis/enzimologia , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/farmacologia , Proteínas de Bactérias/genética , Ligação Competitiva , Divisão Celular/efeitos dos fármacos , Clotrimazol/metabolismo , Clotrimazol/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Econazol/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Técnicas de Inativação de Genes , Cinética , Miconazol/metabolismo , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxirredução , Potenciometria , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria , Análise Espectral Raman , Fatores de Tempo
8.
J Biol Chem ; 284(8): 4796-805, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19068481

RESUMO

The ring contraction process that occurs during cobalamin (vitamin B(12)) biosynthesis is mediated via the action of two enzymes, CobG and CobJ. The first of these generates a tertiary alcohol at the C-20 position of precorrin-3A by functioning as a monooxygenase, a reaction that also forms a gamma lactone with the acetic acid side chain on ring A. The product, precorrin-3B, is then acted upon by CobJ, which methylates at the C-17 position and promotes ring contraction of the macrocycle by catalyzing a masked pinacol rearrangement. Here, we report the characterization of CobG enzymes from Pseudomonas denitrificans and Brucella melitensis. We show that both contain a [4Fe-4S] center as well as a mononuclear non-heme iron. Although both enzymes are active in vivo, the P. denitrificans enzyme was found to be inactive in vitro. Further analysis of this enzyme revealed that the mononuclear non-heme iron was not reducible, and it was concluded that it is rapidly inactivated once it is released from the bacterial cell. In contrast, the B. melitensis enzyme was found to be fully active in vitro and the mononuclear non-heme iron was reducible by dithionite. The reduced mononuclear non-heme was able to react with the oxygen analogue NO, but only in the presence of the substrate precorrin-3A. The cysteine residues responsible for binding the Fe-S center were identified by site-directed mutagenesis. A mechanism for CobG is presented.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis/enzimologia , Cobamidas/química , Oxigenases de Função Mista/química , Oxigenases/química , Pseudomonas/enzimologia , Aerobiose , Proteínas de Bactérias/genética , Brucella melitensis/genética , Domínio Catalítico/fisiologia , Cobamidas/genética , Ferro/química , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Óxido Nítrico/química , Oxirredução , Oxigenases/genética , Pseudomonas/genética , Enxofre/química
9.
J Biol Chem ; 283(16): 10813-21, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18263579

RESUMO

Vitamin B(12), the antipernicious anemia factor, is the cyano derivative of adenosylcobalamin, which is one of nature's most complex coenzymes. Adenosylcobalamin is made along one of two similar yet distinct metabolic pathways, which are referred to as the aerobic and anaerobic routes. The aerobic pathway for cobalamin biosynthesis proceeds via cobalt insertion into a ring-contracted macrocycle, which is closely followed by adenosylation of the cobalt ion. An important prerequisite for adenosylation is the reduction of the centrally chelated metal from Co(II) to a highly nucleophilic Co(I) form. We have cloned a gene, cobR, encoding a biosynthetic enzyme with this co(II)rrin reductase activity from Brucella melitensis. The protein has been overproduced, and the resulting flavoprotein has been purified, characterized, and crystallized and its structure determined to 1.6A resolution. Kinetic and EPR analysis reveals that the enzyme proceeds via a semiquinone form. It is proposed that CobR may interact with the adenosyltransferase to overcome the large thermodynamic barrier required for co(II)rrin reduction.


Assuntos
Cobamidas/biossíntese , Corrinoides/química , Oxirredutases/química , Brucella melitensis/enzimologia , Clonagem Molecular , Cobalto/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Íons , Cinética , Modelos Químicos , Conformação Molecular , Oxirredutases/fisiologia , Relação Estrutura-Atividade , Termodinâmica , Vitamina B 12/química
10.
J Biol Chem ; 282(34): 24816-24, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17553785

RESUMO

We demonstrate that photoexcitation of NAD(P)H reduces heme iron of Mycobacterium tuberculosis P450s CYP121 and CYP51B1 on the microsecond time scale. Rates of formation for the ferrous-carbonmonoxy (Fe(II)-CO) complex were determined across a range of coenzyme/CO concentrations. CYP121 reaction transients were biphasic. A hyperbolic dependence on CO concentration was observed, consistent with the presence of a CO binding site in ferric CYP121. CYP51B1 absorption transients for Fe(II)-CO complex formation were monophasic. The reaction rate was second order with respect to [CO], suggesting the absence of a CO-binding site in ferric CYP51B1. In the absence of CO, heme iron reduction by photoexcited NAD(P)H is fast ( approximately 10,000-11,000 s(-1)) with both P450s. For CYP121, transients revealed initial production of the thiolate-coordinated (P450) complex (absorbance maximum at 448 nm), followed by a slower phase reporting partial conversion to the thiol-coordinated P420 species (at 420 nm). The slow phase amplitude increased at lower pH values, consistent with heme cysteinate protonation underlying the transition. Thus, CO binding occurs to the thiolate-coordinated ferrous form prior to cysteinate protonation. For CYP51B1, slow conversions of both the ferrous/Fe(II)-CO forms to species with spectral maxima at 423/421.5 nm occurred following photoexcitation in the absence/presence of CO. This reflected conversion from ferrous thiolate- to thiol-coordinated forms in both cases, indicating instability of the thiolate-coordinated ferrous CYP51B1. CYP121 Fe(II)-CO complex pH titrations revealed reversible spectral transitions between P450 and P420 forms. Our data provide strong evidence for P420 formation linked to reversible heme thiolate protonation, and demonstrate key differences in heme chemistry and CO binding for CYP121 and CYP51B1.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Mycobacterium tuberculosis/metabolismo , Sítios de Ligação , Monóxido de Carbono/química , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Lasers , Modelos Químicos , Fotoquímica , Compostos de Sulfidrila , Fatores de Tempo
11.
Biochemistry ; 45(27): 8427-43, 2006 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-16819841

RESUMO

Mycobacterium tuberculosis encodes a P450 of the sterol demethylase family (CYP51) chromosomally located adjacent to a ferredoxin (Fdx). CYP51 and Fdx were purified to homogeneity and characterized. Spectroscopic analyses were consistent with cysteinate- and aqua-ligated heme iron in CYP51. An epsilon419 of 134 mM(-1) cm(-1) was determined for oxidized CYP51. Analysis of interactions of 1-, 2-, and 4-phenylimidazoles with CYP51 showed that the 1- and 4-forms were heme iron-coordinating inhibitors, while 2-phenylimidazole induced a substrate-like optical shift. The 2-phenyimidazole-bound CYP51 demonstrated unusual decreases in high-spin heme iron content at elevated temperatures and an almost complete absence of high-spin heme iron by low-temperature EPR. These data suggest thermally induced alterations in CYP51 active site structure and/or binding modes for the small ligand. Reduction of CYP51 in the presence of carbon monoxide leads to formation of an Fe(II)-CO complex with a Soret absorption maximum at 448.5 nm, which collapses (at 0.246 min(-1) at pH 7.0) forming a species with a Soret maximum at 421.5 nm (the inactive P420 form). The rate of P420 formation is accelerated at lower pH, consistent with protonation of the cysteinate (Cys 394) to a thiol underlying the P450-P420 transition. The P450 form is stabilized by estriol, which induces a type I spectral shift on binding CYP51 (Kd = 21.7 microM). Nonstandard spectral changes occur on CYP51 reduction (using either dithionite or natural redox partners), including a blue-shifted Soret band and development of a strong feature at approximately 558.5 nm, suggestive of cysteine thiol ligation. Thus, ligand-free ferrous CYP51 is prone to thiolate ligand protonation even in the absence of carbon monoxide. Analysis of reoxidized CYP51 demonstrates that the enzyme re-forms P450, indicating that Cys 394 thiol is readily deprotonated to thiolate in the ferric form. Spectroscopic analysis of Fdx by EPR (resonance at g = 2.03) and magnetic CD (intensity for oxidized and reduced forms and signal intensity dependence on field strength and temperature) demonstrated that Fdx binds a [3Fe-4S] iron-sulfur cluster. Potentiometric studies show that the midpoint potential for ligand-free CYP51 is -375 mV, increasing to -225 mV in the estriol-bound form. The Fdx potential is -31 mV. Fdx forms a productive electron transfer complex with CYP51 and reduces it at a rate of 3.0 min(-1) in the ligand-free form and 4.3 min(-1) in the estriol-bound form, despite a thermodynamic barrier. Steady-state analysis of a M. tuberculosis class I redox system comprising flavoprotein reductase A (FprA), Fdx, and estriol-bound CYP51 indicates heme iron reduction as a rate-limiting step.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Ferredoxinas/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Monóxido de Carbono/química , Sistema Enzimático do Citocromo P-450/genética , Heme/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Potenciometria , Análise Espectral , Esterol 14-Desmetilase
12.
J Biol Chem ; 278(43): 41900-7, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12917443

RESUMO

CbiX is a cobaltochelatase required for the biosynthesis of vitamin B12 and is found in Archaea as a short form (CbiXS containing 120-145 amino acids) and in some bacteria as a longer version (CbiXL containing 300-350 amino acids). Purification of either recombinant Bacillus megaterium or Synechocystis CbiXL in Escherichia coli, which is facilitated by the presence of a naturally occurring histidine-rich region of the protein, results in the isolation of a dark brown protein solution. The UV/visible spectrum of the protein is consistent with the presence of a redox group, and the lack of definition within the spectrum is suggestive of a 4Fe-4S center. The presence of an iron-sulfur center was confirmed by EPR analysis of the proteins, which produces a pseudoaxial spectrum with g values at 2.04, 1.94, and 1.90. The EPR spectrum was absent at 70 K, an observation that is diagnostic of a 4Fe-4S center. Redox potentiometry coupled with optical spectroscopy allowed the midpoint potential of the redox center to be determined for the CbiXL from both B. megaterium and Synechocystis. Sequence analysis of CbiXL proteins reveals only two conserved cysteine residues within the CbiXL proteins, which are part of an MXCXXC motif. Mutagenesis of the two cysteines leads to loss of both the EPR spectrum and UV/visible spectral features of the Fe-S center in the protein, clearly indicating that these residues are involved in ligating the cofactor to the apoprotein possibly in a butterfly arrangement. The potential physiological role of the iron-sulfur center is discussed.


Assuntos
Proteínas de Bactérias , Proteínas Ferro-Enxofre/química , Liases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus megaterium/enzimologia , Sítios de Ligação , Clonagem Molecular , Cianobactérias/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/genética , Liases/genética , Mutagênese Sítio-Dirigida , Oxirredução , Alinhamento de Sequência
13.
J Biol Chem ; 278(7): 5141-7, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12435731

RESUMO

The first structure of a P450 to an atomic resolution of 1.06 A has been solved for CYP121 from Mycobacterium tuberculosis. A comparison with P450 EryF (CYP107A1) reveals a remarkable overall similarity in fold with major differences residing in active site structural elements. The high resolution obtained allows visualization of several unusual aspects. The heme cofactor is bound in two distinct conformations while being notably kinked in one pyrrole group due to close interaction with the proline residue (Pro(346)) immediately following the heme iron-ligating cysteine (Cys(345)). The active site is remarkably rigid in comparison with the remainder of the structure, notwithstanding the large cavity volume of 1350 A(3). The region immediately surrounding the distal water ligand is remarkable in several aspects. Unlike other bacterial P450s, the I helix shows no deformation, similar to mammalian CYP2C5. In addition, the positively charged Arg(386) is located immediately above the heme plane, dominating the local structure. Putative proton relay pathways from protein surface to heme (converging at Ser(279)) are identified. Most interestingly, the electron density indicates weak binding of a dioxygen molecule to the P450. This structure provides a basis for rational design of putative antimycobacterial agents.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica
14.
J Inorg Biochem ; 91(4): 527-41, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12237220

RESUMO

The CYP121 gene from the pathogenic bacterium Mycobacterium tuberculosis has been cloned and expressed in Escherichia coli, and the protein purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The CYP121 gene encodes a cytochrome P450 enzyme (CYP121) that displays typical electronic absorption features for a member of this superfamily of hemoproteins (major Soret absorption band at 416.5 nm with alpha and beta bands at 565 and 538 nm, respectively, in the oxidized form) and which binds carbon monoxide to give the characteristic Soret band shift to 448 nm. Resonance Raman, EPR and MCD spectra show the protein to be predominantly low-spin and to have a typical cysteinate- and water-ligated b-type heme iron. CD spectra in the far UV region describe a mainly alpha helical conformation, but the visible CD spectrum shows a band of positive sign in the Soret region, distinct from spectra for other P450s recognized thus far. CYP121 binds very tightly to a range of azole antifungal drugs (e.g. clotrimazole, miconazole), suggesting that it may represent a novel target for these antibiotics in the M. tuberculosis pathogen.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Dados de Sequência Molecular , Mycobacterium tuberculosis/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrofotometria , Análise Espectral Raman
15.
Trends Biochem Sci ; 27(5): 250-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12076537

RESUMO

Flavocytochrome P450 BM3 is a bacterial P450 system in which a fatty acid hydroxylase P450 is fused to a mammalian-like diflavin NADPH-P450 reductase in a single polypeptide. The enzyme is soluble (unlike mammalian P450 redox systems) and its fusion arrangement affords it the highest catalytic activity of any P450 mono-oxygenase. This article discusses the fundamental properties of P450 BM3 and how progress with this model P450 has affected our comprehension of P450 systems in general.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons/fisiologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Sítios de Ligação , Modelos Moleculares , Família Multigênica , NADPH-Ferri-Hemoproteína Redutase , Oxirredução , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA