Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(6): 975-990, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862786

RESUMO

Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.


Assuntos
Glutationa Transferase , Neoplasias Pancreáticas , Microambiente Tumoral , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fibronectinas/metabolismo , Metástase Neoplásica , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/enzimologia , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Camundongos , Feminino , Camundongos Endogâmicos C57BL
2.
Oncologist ; 28(12): 1094-1099, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844295

RESUMO

In rapidly progressing cancers, appropriate selection of first-line therapy is essential in prolonging survival. Alongside immunohistochemistry (IHC), comprehensive genomics, including whole exome and transcriptome sequencing (WES/WTS), can improve diagnostic accuracy and guide therapeutic management. Here, we report a young patient with rapidly progressing malignancy and unexpected post-mortem results, a scenario that may have been altered by early, comprehensive genomic sequencing. A 43-year-old man with no relevant medical history presented to the emergency department with progressive cough and dyspnea despite treatment for pneumonia. Radiology revealed enlarged subcarinal, hilar, retroperitoneal, and mesenteric lymph nodes, suspicious for metastasis, and a right kidney mass. Pathologic analysis of a retroperitoneal lymph node was felt to be most consistent with metastatic epithelioid angiomyolipoma (mEAML). Three weeks later, he was urgently treated with an mTOR inhibitor for presumed mEAML due to rapid clinical decline, and a subsequent 4R lymph node biopsy was performed to confirm the diagnosis and identify genomic targets via IHC and WES/WTS. Unfortunately, he developed hypoxic respiratory failure, and only posthumously did WES/WTS reveal pathogenic variants in BAP1 and VHL, consistent with clear cell renal cell carcinoma (ccRCC). With an earlier ccRCC diagnosis, he would have received combination immunotherapy/tyrosine kinase inhibition, which has significantly greater activity than mTOR inhibition in ccRCC. He could have received systemic treatment earlier, with optimal therapy, while potentially carrying lower tumor burden and greater clinical stability. In cases of rapidly progressing malignancies with complex histopathological presentations, early comprehensive molecular-based testing can aid in diagnosis and critical therapeutic decision-making.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Humanos , Adulto , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Rim , Serina-Treonina Quinases TOR , Imuno-Histoquímica
3.
Front Oncol ; 12: 809715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592673

RESUMO

Background: Trastuzumab is a targeted therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, trastuzumab-induced cardiotoxicity (TIC) has been reported when trastuzumab is administered to patients as a single agent or combined with anthracycline. Currently no means for detecting the early onset of TIC such as a protein biomarker is available. In this regard and based on promising results from a preliminary animal study, the potential of cardiac myosin light chain 1(cMLC-1) as a biomarker to predict TIC, screen patients for breast cancer and monitor tumor progression in breast cancer patients was evaluated. Methods: Archived plasma samples collected before and after trastuzumab treatment at various fixed time points from 15 HER2+ patients with or without cardiotoxicity, recently collected plasma samples from 79 breast cancer patients (40 HER2+, 39 HER2-), and 46 healthy donors were analyzed for cMLC-1 levels using an enzyme-linked immunosorbent assay (ELISA). Results: An elevated plasma cMLC-1 level was found to be associated with TIC in 3 out of 7 (43%) trastuzumab-treated HER2+ breast cancer patients. However, this study provided an opportunity for us to study plasma cMCL-1 levels in breast cancer patients. It was demonstrated that elevated plasma cMCL-1 is associated with breast cancer. The cutoff cMLC-1 concentration is estimated to be 44.99 ng/mL with a sensitivity of 59.49% (95%CI: 48.47%-69.63%) and specificity of 71.74% (95%CI: 57.45% -82.68%). We also found a noticeable but not significantly more elevated plasma cMCL-1 level in HER2- than in HER2+ breast cancer patients with the given sample sizes. As a result, improved sensitivity of 79.49% (95%CI: 64.47%-89.22%) with the specificity of 63.04% (95%CI:48.60%-75.48%) were obtained for cMLC-1 to predict HER2- breast cancer with the cutoff at 37.17 ng/mL. Moreover, this study determined that cMLC-1 level was significantly higher in patients with metastatic breast cancer than in patients with non-metastatic breast cancer. Conclusions: While the analysis of cMLC-1 levels in the plasma of a limited number of trastuzumab-treated HER2+ breast cancer patients failed to fully support its identification as a blood protein biomarker for predicting TIC, additional analyses of plasma cMLC-1 levels did significantly establish its correlations with breast cancer and disease progression. Our findings shed light on and filled, to some extent, the gap of knowledge of the potential of cMLC-1 as a blood protein biomarker for screening breast cancer and monitoring disease progression of breast cancer.

4.
Cancer Discov ; 12(5): 1378-1395, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35420673

RESUMO

FGFR inhibitors are approved for the treatment of advanced cholangiocarcinoma harboring FGFR2 fusions. However, the response rate is moderate, and resistance emerges rapidly due to acquired secondary FGFR2 mutations or due to other less-defined mechanisms. Here, we conducted high-throughput combination drug screens, biochemical analysis, and therapeutic studies using patient-derived models of FGFR2 fusion-positive cholangiocarcinoma to gain insight into these clinical profiles and uncover improved treatment strategies. We found that feedback activation of EGFR signaling limits FGFR inhibitor efficacy, restricting cell death induction in sensitive models and causing resistance in insensitive models lacking secondary FGFR2 mutations. Inhibition of wild-type EGFR potentiated responses to FGFR inhibitors in both contexts, durably suppressing MEK/ERK and mTOR signaling, increasing apoptosis, and causing marked tumor regressions in vivo. Our findings reveal EGFR-dependent adaptive signaling as an important mechanism limiting FGFR inhibitor efficacy and driving resistance and support clinical testing of FGFR/EGFR inhibitor therapy for FGFR2 fusion-positive cholangiocarcinoma. SIGNIFICANCE: We demonstrate that feedback activation of EGFR signaling limits the effectiveness of FGFR inhibitor therapy and drives adaptive resistance in patient-derived models of FGFR2 fusion-positive cholangiocarcinoma. These studies support the potential of combination treatment with FGFR and EGFR inhibitors as an improved treatment for patients with FGFR2-driven cholangiocarcinoma. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptores ErbB/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA