Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Hum Genet ; 111(3): 433-444, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38307026

RESUMO

We use the implementation science framework RE-AIM (reach, effectiveness, adoption, implementation, and maintenance) to describe outcomes of In Our DNA SC, a population-wide genomic screening (PWGS) program. In Our DNA SC involves participation through clinical appointments, community events, or at home collection. Participants provide a saliva sample that is sequenced by Helix, and those with a pathogenic variant or likely pathogenic variant for CDC Tier 1 conditions are offered free genetic counseling. We assessed key outcomes among the first cohort of individuals recruited. Over 14 months, 20,478 participants enrolled, and 14,053 samples were collected. The majority selected at-home sample collection followed by clinical sample collection and collection at community events. Participants were predominately female, White (self-identified), non-Hispanic, and between the ages of 40-49. Participants enrolled through community events were the most racially diverse and the youngest. Half of those enrolled completed the program. We identified 137 individuals with pathogenic or likely pathogenic variants for CDC Tier 1 conditions. The majority (77.4%) agreed to genetic counseling, and of those that agreed, 80.2% completed counseling. Twelve clinics participated, and we conducted 108 collection events. Participants enrolled at home were most likely to return their sample for sequencing. Through this evaluation, we identified facilitators and barriers to implementation of our state-wide PWGS program. Standardized reporting using implementation science frameworks can help generalize strategies and improve the impact of PWGS.


Assuntos
Aconselhamento Genético , Ciência da Implementação , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Genômica
2.
Front Synaptic Neurosci ; 14: 826601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685246

RESUMO

The dentate gyrus is both a critical gatekeeper for hippocampal signal processing and one of the first brain regions to become dysfunctional in Alzheimer's disease (AD). Accordingly, the appropriate balance of excitation and inhibition through the dentate is a compelling target for mechanistic investigation and therapeutic intervention in early AD. Previously, we reported an increased long-term potentiation (LTP) magnitude at medial perforant path-dentate granule cell (MPP-DGC) synapses in slices from both male and acutely ovariectomized female TgF344-AD rats compared with wild type (Wt) as early as 6 months of age that is accompanied by an increase in steady-state postsynaptic depolarization during the high-frequency stimulation used to induce plasticity. Subsequently, we found that heightened function of ß-adrenergic receptors (ß-ARs) drives the increase in the LTP magnitude, but the increase in steady-state depolarization was only partially due to ß-AR activation. As we previously reported no detectable difference in spine density or presynaptic release probability, we entertained the possibility that DGCs themselves might have modified passive or active membrane properties, which may contribute to the significant increase in charge transfer during high-frequency stimulation. Using brain slice electrophysiology from 6-month-old female rats acutely ovariectomized to eliminate variability due to fluctuating plasma estradiol, we found significant changes in passive membrane properties and active membrane properties leading to increased DGC excitability in TgF344-AD rats. Specifically, TgF344-AD DGCs have an increased input resistance and decreased rheobase, decreased sag, and increased action potential (AP) spike accommodation. Importantly, we found that for the same amount of depolarizing current injection, DGCs from TgF344-AD compared with Wt rats have a larger magnitude voltage response, which was accompanied by a decreased delay to fire the first action potential, indicating TgF344-AD DGCs membranes are more excitable. Taken together, DGCs in TgF344-AD rats are more excitable, which likely contributes to the heightened depolarization during high-frequency synaptic activation.

3.
Implement Sci Commun ; 3(1): 48, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484601

RESUMO

BACKGROUND: In 2021, the Medical University of South Carolina (MUSC) partnered with Helix, a population genetic testing company, to offer population-wide genomic screening for Centers for Disease Control and Preventions' Tier 1 conditions of hereditary breast and ovarian cancer, Lynch syndrome, and familial hypercholesterolemia to 100,000 individuals in South Carolina. We developed an implementation science protocol to study the multi-level factors that influence the successful implementation of the In Our DNA SC initiative. METHODS: We will use a convergent parallel mixed-methods study design to evaluate the implementation of planned strategies and associated outcomes for In Our DNA SC. Aims focus on monitoring participation to ensure engagement of diverse populations, assessing contextual factors that influence implementation in community and clinical settings, describing the implementation team's facilitators and barriers, and tracking program adaptations. We report details about each data collection tool and analyses planned, including surveys, interview guides, and tracking logs to capture and code work group meetings, adaptations, and technical assistance needs. DISCUSSION: The goal of In Our DNA SC is to provide population-level screening for actionable genetic conditions and to foster ongoing translational research. The use of implementation science can help better understand how to support the success of In Our DNA SC, identify barriers and facilitators to program implementation, and can ensure the sustainability of population-level genetic testing. The model-based components of our implementation science protocol can support the identification of best practices to streamline the expansion of similar population genomics programs at other institutions.

4.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657270

RESUMO

Genome-wide association studies identified the BIN1 locus as a leading modulator of genetic risk in Alzheimer's disease (AD). One limitation in understanding BIN1's contribution to AD is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely change expression. Here, we determined the effects of increasing expression of the major neuronal isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted with L-type voltage-gated calcium channels (LVGCCs) and that BIN1-LVGCC interactions were modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented BIN1-induced network hyperexcitability. These data shed light on BIN1's neuronal function and suggest that it may contribute to Tau-dependent hyperexcitability in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor/metabolismo
5.
J Neurosci ; 39(36): 7195-7205, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31320448

RESUMO

Clinical and experimental data indicate striatal cholinergic dysfunction in dystonia, a movement disorder typically resulting in twisted postures via abnormal muscle contraction. Three forms of isolated human dystonia result from mutations in the TOR1A (DYT1), THAP1 (DYT6), and GNAL (DYT25) genes. Experimental models carrying these mutations facilitate identification of possible shared cellular mechanisms. Recently, we reported elevated extracellular striatal acetylcholine by in vivo microdialysis and paradoxical excitation of cholinergic interneurons (ChIs) by dopamine D2 receptor (D2R) agonism using ex vivo slice electrophysiology in Dyt1ΔGAG/+ mice. The paradoxical excitation was caused by overactive muscarinic receptors (mAChRs), leading to a switch in D2R coupling from canonical Gi/o to noncanonical ß-arrestin signaling. We sought to determine whether these mechanisms in Dyt1ΔGAG/+ mice are shared with Thap1C54Y/+ knock-in and Gnal+/- knock-out dystonia models and to determine the impact of sex. We found Thap1C54Y/+ mice of both sexes have elevated extracellular striatal acetylcholine and D2R-induced paradoxical ChI excitation, which was reversed by mAChR inhibition. Elevated extracellular acetylcholine was absent in male and female Gnal+/- mice, but the paradoxical D2R-mediated ChI excitation was retained and only reversed by inhibition of adenosine A2ARs. The Gi/o-preferring D2R agonist failed to increase ChI excitability, suggesting a possible switch in coupling of D2Rs to ß-arrestin, as seen previously in a DYT1 model. These data show that, whereas elevated extracellular acetylcholine levels are not always detected across these genetic models of human dystonia, the D2R-mediated paradoxical excitation of ChIs is shared and is caused by altered function of distinct G-protein-coupled receptors.SIGNIFICANCE STATEMENT Dystonia is a common and often disabling movement disorder. The usual medical treatment of dystonia is pharmacotherapy with nonselective antagonists of muscarinic acetylcholine receptors, which have many undesirable side effects. Development of new therapeutics is a top priority for dystonia research. The current findings, considered in context with our previous investigations, establish a role for cholinergic dysfunction across three mouse models of human genetic dystonia: DYT1, DYT6, and DYT25. The commonality of cholinergic dysfunction in these models arising from diverse molecular etiologies points the way to new approaches for cholinergic modulation that may be broadly applicable in dystonia.


Assuntos
Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/genética , Distonia/genética , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Chaperonas Moleculares/genética , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiopatologia , Distonia/metabolismo , Distonia/fisiopatologia , Espaço Extracelular/metabolismo , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/metabolismo , Receptores Muscarínicos/metabolismo , Potenciais Sinápticos , beta-Arrestinas/metabolismo
6.
Hippocampus ; 26(1): 110-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26190171

RESUMO

When circulating 17ß estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory. In addition to SC inputs, innervation from the entorhinal cortex in the temporoammonic (TA) pathway onto CA1 distal dendrites in stratum lacunosum-moleculare is critical for spatial memory formation and retrieval. It is not known whether E2 modulates TA-CA1 synapses similarly to SC-CA1 synapses. Here, we report that 24 hours post-E2 injection, dendritic spine density on CA1 pyramidal cell distal dendrites and current mediated by GluN2B-containing NMDARs at TA-CA1 synapses is increased, similarly to our previous findings at SC-CA1 synapses. However, in contrast to SC-CA1 synapses, AMPAR transmission at TA-CA1 synapses is significantly increased, and there is no effect on the LTP magnitude. Pharmacological blockade of GluN2B-containing NMDARs or ERK activation, which occurs downstream of synaptic but not extrasynaptic GluN2B-containing NMDARs, attenuates the LTP magnitude only in slices from E2-treated rats. These data show that E2 recruits a causal role for GluN2B-containing NMDARs and ERK signaling in the induction of LTP, cellular mechanisms not required for LTP induction at TA-CA1 synapses in vehicle-treated OVX female rats.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Potenciação de Longa Duração/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ovariectomia , Proestro/fisiologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Lobo Temporal/citologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiologia , Técnicas de Cultura de Tecidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
7.
Neurobiol Aging ; 35(10): 2183-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24813636

RESUMO

We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17ß estradiol (E2) increases CA1 spine density, NMDAR to AMPAR ratio, GluN2B-mediated NMDAR current, and long-term potentiation at CA3-CA1 synapses if administered by 15, but not at 19-month post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19-month post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low-level E2 replacement, commenced by 11-month post-OVX using subcutaneous capsules removed 2 weeks before acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19-month post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window.


Assuntos
Envelhecimento/fisiologia , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Hipocampo/fisiologia , Sinapses/fisiologia , Fatores Etários , Animais , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Ovariectomia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
8.
Cell Mol Neurobiol ; 34(5): 693-705, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687455

RESUMO

The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region.


Assuntos
Membrana Celular/metabolismo , Subunidades Proteicas/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Sinvastatina/farmacologia , Transmissão Sináptica/fisiologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Psychoneuroendocrinology ; 42: 77-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636504

RESUMO

Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17ß estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels.


Assuntos
Estradiol/farmacologia , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Resiliência Psicológica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
10.
J Alzheimers Dis ; 38(4): 867-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24081376

RESUMO

Alzheimer's disease (AD) is characterized by amyloid-ß (Aß) plaques, hyperphosphorylated tau neurofibrillary tangles, and cholinergic dysfunction. Cholinergic degeneration can be mimicked in rats by lesioning medial septum cholinergic neurons. Hippocampal cholinergic denervation disrupts retrograde nerve growth factor (NGF) transport, leading to its accumulation, which subsequently triggers sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. Previously we reported that coincident with noradrenergic sprouting is the partial reinnervation of hippocampus with cholinergic fibers and the maintenance of a M1 muscarinic acetylcholine receptor (M1 mAChR) dependent long-term depression at CA3-CA1 synapses that is lost in the absence of sprouting. These findings suggest that sympathetic sprouting and the accompanying cholinergic reinnervation maintains M1 mAChR function. Importantly, noradrenergic sympathetic and cholinergic sprouting have been demonstrated in human postmortem AD hippocampus. Furthermore, M1 mAChRs are a recent focus as a therapeutic target for AD given their role in cognition and non-amyloidogenic processing of amyloid-ß protein precursor (AßPP). Here we tested the hypotheses that noradrenergic sympathetic sprouting is triggered by NGF, that sprouting maintains non-amyloidogenic AßPP processing, and that sprouting is prevented by intrahippocampal Aß42 infusion. We found that NGF stimulates sprouting, that sprouting maintains non-amyloidogenic AßPP processing, and that Aß42 is not only toxic to central cholinergic fibers innervating hippocampus but it prevents and reverses noradrenergic sympathetic sprouting and the accompanying cholinergic reinnervation. These findings reiterate the clinical implications of sprouting as an innate compensatory mechanism and emphasize the importance of M1 mAChRs as an AD therapeutic target.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fibras Colinérgicas/metabolismo , Hipocampo/metabolismo , Fibras Adrenérgicas/metabolismo , Fibras Adrenérgicas/patologia , Peptídeos beta-Amiloides/toxicidade , Amiloidose/induzido quimicamente , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Fibras Colinérgicas/patologia , Hipocampo/patologia , Masculino , Fator de Crescimento Neural/farmacologia , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Sprague-Dawley
11.
Hippocampus ; 23(1): 108-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965452

RESUMO

17ß-estradiol (E2), at high circulating levels, enhances learning and memory in many women, making it a clinical treatment for hormone-related cognitive decline in aging. However, the mechanisms stimulated by E2, which are responsible for its cognitive enhancing effects, remain incompletely defined. Using an ovariectomized rat model, we previously reported that increasing plasma E2 enhances the magnitude of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses, which is caused by a selective increase in current mediated by NR2B-containing NMDARs, leading to an increase in the NMDAR/AMPAR ratio. Whether the increase in NR2B current is causally related to the ability of E2 to enhance hippocampal dependent learning and memory has yet to be tested. Here, we find that E2 enhances performance in the novel object recognition (NOR) task with the same time course we previously showed E2 enhances the LTP magnitude, temporally linking the increase in LTP to enhanced learning and memory. Furthermore, using the selective NR2B subunit antagonist Ro25-6981, we find that the E2-enhanced NOR, like the enhanced LTP, requires hippocampal NR2B-containing NMDARs, specifically in area CA1. Finally, using whole-cell recordings and the phosphatase inhibitor orthovanadate, we investigated whether the E2-induced increase in NMDAR current is caused by an increase in the density of synaptic NMDARs and/or an increase in NMDAR subunit phosphorylation. We find that both mechanisms are responsible for the enhanced NMDAR current in E2-treated rats. Our results show that the E2-enhanced NOR requires a functional increase in NR2B-containing NMDARs, a requirement shared with the E2-enhanced LTP magnitude at CA3-CA1 synapses, supporting the hypothesis that the increase in LTP likely contributes to the enhanced learning and memory following an increase in plasma E2 levels.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Estradiol/sangue , Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Percepção de Forma/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Reconhecimento Visual de Modelos/efeitos dos fármacos , Fenóis/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
12.
J Neurosci ; 32(16): 5440-53, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514307

RESUMO

Learning triggers alterations in gene transcription in brain regions such as the hippocampus and the entorhinal cortex (EC) that are necessary for long-term memory (LTM) formation. Here, we identify an essential role for the G9a/G9a-like protein (GLP) lysine dimethyltransferase complex and the histone H3 lysine 9 dimethylation (H3K9me2) marks it catalyzes, in the transcriptional regulation of genes in area CA1 of the rat hippocampus and the EC during memory consolidation. Contextual fear learning increased global levels of H3K9me2 in area CA1 and the EC, with observable changes at the Zif268, DNMT3a, BDNF exon IV, and cFOS gene promoters, which occurred in concert with mRNA expression. Inhibition of G9a/GLP in the EC, but not in the hippocampus, enhanced contextual fear conditioning relative to control animals. The inhibition of G9a/GLP in the EC induced several histone modifications that include not only methylation but also acetylation. Surprisingly, we found that downregulation of G9a/GLP activity in the EC enhanced H3K9me2 in area CA1, resulting in transcriptional silencing of the non-memory permissive gene COMT in the hippocampus. In addition, synaptic plasticity studies at two distinct EC-CA1 cellular pathways revealed that G9a/GLP activity is critical for hippocampus-dependent long-term potentiation initiated in the EC via the perforant pathway, but not the temporoammonic pathway. Together, these data demonstrate that G9a/GLP differentially regulates gene transcription in the hippocampus and the EC during memory consolidation. Furthermore, these findings support the possibility of a role for G9a/GLP in the regulation of cellular and molecular cross talk between these two brain regions during LTM formation.


Assuntos
Córtex Entorrinal/enzimologia , Inativação Gênica/fisiologia , Hipocampo/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Memória/fisiologia , Ativação Transcricional/fisiologia , Análise de Variância , Animais , Azepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoprecipitação da Cromatina , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo , Inativação Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/fisiologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Metilação , Técnicas de Patch-Clamp , Polímeros , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ativação Transcricional/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 107(45): 19543-8, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974957

RESUMO

Whether estrogen replacement is beneficial to cognitive health is controversial. Some studies have shown that estrogen replacement therapy (ERT) relieves memory impairment associated with menopause in women, whereas others suggest that estrogen not only is incapable of providing a benefit, but actually can be detrimental. One possible explanation for this discrepancy in study findings could be the varying time after menopause at which ERT is initiated. It has been proposed that a critical period exists during which ERT must be administered to enhance cognitive function. This idea has yet to be tested directly using functional synaptic studies, however. Here we investigated whether prolonged hormone deprivation caused by ovariectomy (OVX) in young adult rats prevents the ability of estrogen replacement to increase synaptic function in the hippocampus to a degree necessary for estrogen-induced improvement in learning and memory. Remarkably, estrogen replacement was found to increase long-term potentiation, the current mediated by NR2B-containing NMDA receptors, and the dendritic spine density at CA3-CA1 synapses up to 15 months post-OVX. However, by 19 months post-OVX, the same estrogen replacement was unable to induce these changes. Importantly, this loss of estrogen's effectiveness was seen to be a consequence of the duration of deprivation. In female rats aged with their ovaries intact and examined at the same chronological age as the 19-month post-OVX group, estrogen replacement significantly increased synaptic function and spine density. These data clearly demonstrate that a critical period exists during which ERT must be administered, and that once this period passes, the beneficial effects are lost.


Assuntos
Estrogênios/farmacologia , Hipocampo/fisiologia , Menopausa/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Fatores Etários , Animais , Terapia de Reposição de Estrogênios/métodos , Estrogênios/administração & dosagem , Estrogênios/uso terapêutico , Feminino , Ratos , Fatores de Tempo
14.
Psychoneuroendocrinology ; 34 Suppl 1: S130-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19596521

RESUMO

When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long-term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long-term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Estradiol/farmacologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Modelos Neurológicos , Inibição Neural/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
15.
J Neurosci ; 26(33): 8517-22, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16914677

RESUMO

Estradiol, through activation of genomic estrogen receptors, induces changes in synaptic morphology and function in hippocampus, a brain region important for memory acquisition. Specifically, this hormone increases CA1 pyramidal cell dendritic spine density, NMDA receptor (NMDAR)-mediated transmission, and the magnitude of long-term potentiation (LTP) at CA3-CA1 synapses. We recently reported that the estradiol-induced increase in LTP magnitude occurs only when there is a simultaneous increase in the fractional contribution of NMDAR-mediated transmission relative to AMPA receptor transmission, suggesting a direct role for the increase in NMDAR transmission to the heightened LTP magnitude. Estradiol has been shown to increase expression of the NMDAR subunit NR2B, but whether this translates into an increase in function of NR2B-containing receptors remains to be determined. Here we show that not only is the estradiol-induced increase in NMDAR transmission mediated by NR2B-containing receptors, but blocking these receptors using RO25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol] (0.5 microM), an NR2B selective antagonist, prevents the estradiol-induced increase in LTP magnitude. Thus, our data show a causal link between the estradiol-induced increase in transmission mediated by NR2B-containing NMDARs and the increase in LTP magnitude.


Assuntos
Estradiol/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Técnicas In Vitro , Fenóis/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Fatores de Tempo
16.
J Neurosci ; 25(34): 7780-91, 2005 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16120779

RESUMO

Elevated levels of estradiol enhance learning in mammals, including humans, likely a result of hormone-induced heightened plasticity at CA3-CA1 synapses. The increase in long-term potentiation (LTP) magnitude is considered to be a consequence of the estradiol-induced increase in dendritic spine density and NMDA receptor (NMDAR)-mediated transmission; however, direct evidence linking these changes together is lacking. Alternatively, alterations in GABAergic inhibition or presynaptic release probability could contribute. Here, we show in time course studies using hippocampal slices from estradiol-treated ovariectomized rats that the LTP magnitude is increased only when spine density is increased simultaneously with an increase in NMDAR transmission relative to AMPA receptor (AMPAR) transmission, with no role for alterations in GABAergic inhibition or release probability. With time after hormone treatment, AMPAR transmission gradually increases during the maintained increase in spine density and NMDAR transmission. Eventually, the balance between NMDAR and AMPAR transmission is reestablished, and the LTP magnitude is no longer increased. Blocking genomic estrogen receptors prevents the heightened spine density, NMDAR transmission, and LTP magnitude, suggesting a tight mechanistic coupling between these morphological and functional changes. Thus, we propose that the hormone-induced increase in functional synapse density alone is not sufficient to support heightened plasticity. Rather, estradiol increases LTP via enhancing NMDAR transmission, likely through receptor insertion into newly formed or preexisting synapses. Later, when excitability in the circuit is at its highest and spine density remains elevated, the LTP magnitude is no longer increased, probably as a consequence of the delayed increase in AMPAR transmission that resets the balance between NMDAR and AMPAR transmission.


Assuntos
Estradiol/farmacologia , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA