Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0533522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272818

RESUMO

Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.


Assuntos
Bacteriófagos , Psychrobacter , Bacteriófagos/genética , Psychrobacter/genética , Filogenia , Fosfoadenosina Fosfossulfato , DNA Viral/genética , Genoma Viral , Escherichia coli/genética , Fases de Leitura Aberta
2.
J Phycol ; 48(1): 74-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27009652

RESUMO

The impacts of ultraviolet-B radiation (UVB) on polar sea-ice algal communities have not yet been demonstrated. We assess the impacts of UV on these communities using both laboratory experiments on algal isolates and by modification of the in situ spectral distribution of the under-ice irradiance. In the latter experiment, filters were attached to the upper surface of the ice so that the algae were exposed in situ to treatments of ambient levels of PAR and UV radiation, ambient radiation minus UVB, and ambient radiation minus all UV. After 16 d, significant increases in chl a and cell numbers were recorded for all treatments, but there were no significant differences among the different treatments. Bottom-ice algae exposed in vitro were considerably less tolerant to UVB than those in situ, but this tolerance improved when algae were retained within a solid block of ice. In addition, algae extracted from brine channels in the upper meter of sea ice and exposed to PAR and UVB in the laboratory were much more tolerant of high UVB doses than were any bottom-ice isolates. This finding indicates that brine algae may be better adapted to high PAR and UVB than are bottom-ice algae. The data indicate that the impact of increased levels of UVB resulting from springtime ozone depletion on Antarctic bottom-ice communities is likely to be minimal. These algae are likely protected by strong UVB attenuation by the overlying ice and snow, by other inorganic and organic substances in the ice matrix, and by algal cells closer to the surface.

3.
J Phycol ; 45(3): 771-83, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27034052

RESUMO

While the growth of Southern Ocean phytoplankton is often limited by iron availability, there are no comparable experiments on sea-ice algae. Here we assess the use of ferredoxin and flavodoxin to investigate the iron nutritional status of sea-ice algae and describe the development of a quantitative immunoassay for both proteins in marine diatoms. High-affinity monoclonal antibodies toward both proteins were produced from Cylindrotheca closterium (Ehrenb.) J. M. Lewin et Reimann, and these were used to develop Western blots. Western blots run on whole protein extracts detected both proteins with little cross-reactivity toward other proteins. The two proteins could be successfully quantitated when applied to gels at between 5 and 50 ng in a volume of 25 µL (0.2-2 µg ·â€ŠmL(-1) ). Flavodoxin and ferrodoxin expression was examined in the Antarctic diatoms Entomoneis kjellmannii (Cleve) Poulin et Cardinal, Navicula directa (W. Sm.) Ralfs, Fragilariopsis curta (Van Heurck) Hust., Pseudo-nitzschia sp., Porosira glacialis (Grunow) E. G. Jørg., Fragilariopsis cylindrus (Grunow) Willi Krieg., Fragilariopsis sublinearis (Van Heurck) Heiden et Kolbe, C. closterium, Nitzschia lecointei Van Heurck, and the dinoflagellate Polarella glacialis Montresor, Procaccini et Stoecker. Two Arctic isolates were also examined, Nitzschia frigida (Grunow) and Fragilariopsis oceanica (Cleve) Hasle. Significant heterogeneity of protein expression was observed despite all cultures being grown in iron-replete f/2 medium. Only one species, F. cylindrus, displayed the expected expression of ferredoxin only in iron-replete medium. Four were observed to produce both proteins under iron-replete conditions. Ferredoxin was not detected at all in F. curta and Pseudo-nitzschia sp., but distinct flavodoxin bands were observed in both of these organisms. All species examined were observed to express either flavodoxin or ferredoxin or both of the proteins as determined by Western immunoblotting.

4.
Z Naturforsch C J Biosci ; 57(5-6): 471-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12132687

RESUMO

Mycosporine like amino acids (MAAs) were detected in low concentration in sea ice algae growing in situ at Cape Evans, Antarctica. Four areas of sea ice were covered with plastics of different UV absorption exposing the bottom- ice algal community to a range of UV doses for a period of 15 days. Algae were exposed to visible radiation only; visible + UV radiation; and visible + enhanced UV radiation. MAA content per cell at the start of the experiment was low in snow-covered plots but higher in samples from ice with no snow cover. During the study period, the MAA content per cell reduced in all treatments, but the rate of this decline was less under both ambient UV and visible radiation than under snow covered plots. While low doses of UVB radiation may have stimulated some MAA production (or at least slowed its loss), relatively high doses of UVB radiation resulted in almost complete loss of MAAs from ice algal cells. Despite this reduction in MAA content per cell, the diatoms in all samples grew well, and there was no discernible effect on viability. This suggests that MAAs may play a minor role as photoprotectants in sea ice algae. The unique structure of the bottom ice algal community may provide a self-shading effect such that algal cells closest to the surface of the ice contain more MAAs than those below them and confer a degree of protection on the community as a whole.


Assuntos
Aminoácidos/análise , Cicloexanóis/análise , Eucariotos/crescimento & desenvolvimento , Raios Ultravioleta , Regiões Antárticas , Cromatografia Líquida de Alta Pressão , Eucariotos/química , Eucariotos/efeitos da radiação , Gelo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA