Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 970(1-2): 73-86, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12706249

RESUMO

Administration of cocaine induces the Fos family of transcription factors in the striatum, including the nucleus accumbens (NAc), a brain region important for the rewarding effects of addictive drugs. Several Fos proteins are induced acutely by cocaine, with stable isoforms of DeltaFosB predominating after chronic drug administration. However, it has been difficult to study the functional consequences of these Fos responses in vivo. Fos proteins heterodimerize with members of the Jun family to form active AP-1 transcription factor complexes. In the present study, we took advantage of this property and generated transgenic mice, using the tetracycline gene regulation system, that support the inducible, brain region-specific expression of a dominant negative mutant form of c-Jun (Deltac-Jun), which can antagonize the actions of Fos proteins. Expression of Deltac-Jun in the striatum and certain other brain regions of adult mice decreases their development of cocaine-induced conditioned place preference, suggesting reduced sensitivity to the rewarding effects of cocaine. In contrast, Deltac-Jun expression had no effect on cocaine-induced locomotor activity or sensitization. However, expression of Deltac-Jun in adult mice blocked the ability of chronic cocaine administration to induce three known targets for AP-1 in the NAc: the AMPA glutamate receptor subunit GluR2, the cyclin-dependent protein kinase Cdk5, and the transcription factor nuclear factor-kappaB (NFkappaB), without affecting several other proteins examined for comparison. Taken together, these results provide further support for an important role of AP-1-mediated transcription in some of the behavioral and molecular mechanisms underlying cocaine addiction.


Assuntos
Comportamento Aditivo/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Mutação/fisiologia , Proteínas Proto-Oncogênicas c-jun/biossíntese , Animais , Comportamento Aditivo/genética , Regulação da Expressão Gênica/fisiologia , Genes Dominantes/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células PC12 , Proteínas Proto-Oncogênicas c-jun/genética , Ratos
2.
J Musculoskelet Neuronal Interact ; 2(5): 479-88, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15758417

RESUMO

The molecular and cellular mechanism of estrogen action in skeletal tissue remains unclear. The purpose of this study was to understand the role of estrogen receptor-beta, (ERbeta) on cortical and cancellous bone during growth and aging by comparing the bone phenotype of 6- and 13-month-old female mice with or without ERbeta. Groups of 11-14 wild-type (WT) controls and ERbeta knockout (BERKO) female mice were necropsied at 6 and 13 months of age. At both ages, BERKO mice did not differ significantly from WT controls in uterine weight and uterine epithelial thickness, indicating that ERbeta does not regulate the growth of uterine tissue. Femoral length increased significantly by 5.5% at 6 months of age in BERKO mice compared with WT controls. At 6 months of age, peripheral quantitative computerized tomography (pQCT) analysis of the distal femoral metaphysis (DFM) and femoral shafts showed that BERKO mice had significantly higher cortical bone content and periosteal circumference as compared with WT controls at both sites. In contrast to the findings in cortical bone, at 6 months of age, there was no difference between BERKO and WT mice in trabecular density, trabecular bone volume (TBV), or formation and resorption indices at the DFM. In 13-month-old WT mice, TBV (-41%), trabecular density (-27%) and cortical thickness decreased significantly. while marrow cavity and endocortical circumference increased significantly compared with 6-month-old WT mice. These age-related decreases in cancellous and endocortical bone did not occur in BERKO mice. At 13 months of age, BERKO mice had significantly higher total, trabecular and cortical bone, while having significantly lower bone resorption, bone formation and bone turnover in DFM compared with WT mice. These results indicate that deleting ERbeta protected against age-related bone loss in both the cancellous and endocortical compartments by decreasing bone resorption and bone turnover in aged female mice. These data demonstrate that in female mice, ERbeta plays a role in inhibiting periosteal bone formation, longitudinal and radial bone growth during the growth period, while it plays a role in stimulating bone resorption, bone turnover and bone loss on cancellous and endocortical bone surfaces during the aging process.

3.
J Clin Invest ; 107(5): 603-10, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11238561

RESUMO

The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1-EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses.


Assuntos
AMP Cíclico/biossíntese , Dinoprostona/farmacologia , Agregação Plaquetária , Receptores de Prostaglandina E/metabolismo , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Agregação Plaquetária/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Epoprostenol , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP3 , Trombose Venosa/patologia
4.
Immunity ; 10(2): 207-17, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10072073

RESUMO

Cathepsins have been implicated in the degradation of proteins destined for the MHC class II processing pathway and in the proteolytic removal of invariant chain (Ii), a critical regulator of MHC class II function. Mice lacking the lysosomal cysteine proteinase cathepsin S (catS) demonstrated a profound inhibition of Ii degradation in professional APC in vivo. A marked variation in the generation of MHC class II-bound Ii fragments and presentation of exogenous proteins was observed between B cells, dendritic cells, and macrophages lacking catS. CatS-deficient mice showed diminished susceptibility to collagen-induced arthritis, suggesting a potential therapeutic target for regulation of immune responsiveness.


Assuntos
Apresentação de Antígeno , Antígenos de Diferenciação de Linfócitos B/metabolismo , Artrite/imunologia , Catepsinas/fisiologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Artrite/induzido quimicamente , Catepsinas/genética , Colágeno , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Desenho de Fármacos , Marcação de Genes , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Baço/imunologia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA