Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Clin Anesth ; 86: 111053, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36736208

RESUMO

The optimal package of components for a prehabilitation intervention remains unclear. The aim was to determine the efficacy of supervised exercise prehabilitation programs to enhance patient fitness and improve surgical outcomes. The protocol was preregistered (PROSPERO: CRD42020180693). PubMed, MEDLINE, CINAHL, AMED, CENTRAL, PeDro, ClinicalTrials.gov and the WHO International Clinical Trials Registry were searched. Randomized controlled trials (RCTs) of supervised prehabilitation programs before major abdominal surgery were included. Physical function, cardiorespiratory capacity and surgical outcomes were the primary outcomes measures. Risk of bias was assessed according to the Cochrane Risk of Bias 1.0 tool for RCTs. Data are summarized narratively, and where possible, quantitavely. Meta-analyses results are reported as risk ratios (RR), mean difference of changes between baseline and follow-up time points or mean difference between groups and 95% confidence interval (CI). Twenty RCTs were included in the analysis with a total of 1258 patients. The average 6-min walking distance change was +33 m in the prehabilitation group compared to the usual care (UC) group after prehabilitation (95% CI: [13, 53], P < 0.01). Only in studies with more than one supervised session per week changes in 6-min-walk distance were significantly higher in the prehabilitation group compared to the UC group after prehabiliatation (Mean difference: 47 m, 95% [CI]: [20-75], P < 0.01). The change in peak volume of oxygen uptake during a maximum cardiopulmonary test was +1.47 mL·kg-1·min-1 in the prehabilitation group compared to the UC group (95% CI: [0.68, 2.25], P < 0.01). There was no significant difference in the change in oxygen uptake at anaerobic threshold between groups (Mean differences: 0.47, 95% CI: [-0.16, 1.10], P:0.14). Post-operative complications incidence was similar between groups (RR: 0.80, 95% CI: [0.61, 1.05], P:0.11), irrespective of the frequency of supervised session per week (RR: 0.67, 95% CI: [0.43, 1.03], P:0.07). In conclusion, prehabilitation programmes with more than one supervised session per week improved physical function but did not enhance surgical outcomes.


Assuntos
Exercício Físico , Exercício Pré-Operatório , Humanos , Abdome/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Oxigênio
2.
PLoS One ; 17(10): e0276009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264901

RESUMO

OBJECTIVE: To determine cardiorespiratory fitness and neuromuscular function of people with CFS and FMS compared to healthy individuals. DESIGN: Systematic review and meta-analysis. DATA SOURCES: PubMed, Medline, CINAHL, AMED, Cochrane Central Register of Controlled Trials (CENTRAL), and PEDro from inception to June 2022. ELIGIBLE CRITERIA FOR SELECTING STUDIES: Studies were included if presenting baseline data on cardiorespiratory fitness and/or neuromuscular function from observational or interventional studies of patients diagnosed with FMS or CFS. Participants were aged 18 years or older, with results also provided for healthy controls. Risk of bias assessment was conducted using the Quality Assessment Tool for Quantitative Studies (EPHPP). RESULTS: 99 studies including 9853 participants (5808 patients; 4405 healthy controls) met our eligibility criteria. Random effects meta-analysis showed lower cardiorespiratory fitness (VO2max, anaerobic threshold, peak lactate) and neuromuscular function (MVC, fatigability, voluntary activation, muscle volume, muscle mass, rate of perceived exertion) in CFS and FMS compared to controls: all with moderate to high effect sizes. DISCUSSION: Our results demonstrate lower cardiorespiratory fitness and muscle function in those living with FMS or CFS when compared to controls. There were indications of dysregulated neuro-muscular interactions including heightened perceptions of effort, reduced ability to activate the available musculature during exercise and reduced tolerance of exercise. TRAIL REGISTRATION: PROSPERO registration number: (CRD42020184108).


Assuntos
Aptidão Cardiorrespiratória , Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Exercício Físico , Lactatos
3.
J Cachexia Sarcopenia Muscle ; 13(5): 2298-2309, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35851996

RESUMO

Quantification and monitoring of lean body mass is an important component of nutrition assessment to determine nutrition status and muscle loss. The negative impact of reduced muscle mass and muscle function is increasingly evident across acute and chronic disease states but is particularly pronounced in patients with cancer. Ultrasound is emerging as a promising tool to directly measure skeletal muscle mass and quality. Unlike other ionizing imaging techniques, ultrasound can be used repeatedly at the bedside and may compliment nutritional risk assessment. This review aims to describe the current use of skeletal muscle ultrasound (SMUS) to measure muscle mass and quality in patients with acute and chronic clinical conditions and its ability to predict functional capacity, severity of malnutrition, hospital admission, and survival. Databases were searched from their inception to August 2021 for full-text articles in English. Relevant articles were included if SMUS was investigated in acute or chronic clinical contexts and correlated with a defined clinical outcome measure. Data were synthesized for narrative review due to heterogeneity between studies. This review analysed 37 studies (3100 patients), which met the inclusion criteria. Most studies (n = 22) were conducted in critical care. The clinical outcomes investigated included functional status at discharge (intensive care unit-acquired weakness), nutritional status, and length of stay. SMUS was also utilized in chronic conditions such as chronic obstructive pulmonary disease, chronic heart failure, and chronic renal failure to predict hospital readmission and disease severity. Only two studies investigated the use of SMUS in patients with cancer. Of the 37 studies, 28 (76%) found that SMUS (cross-sectional area, muscle thickness, and echointensity) showed significant associations with functional capacity, length of stay, readmission, and survival. There was significant heterogeneity in terms of ultrasound technique and outcome measurement across the included studies. This review highlights that SMUS continues to gain momentum as a potential tool for skeletal muscle assessment and predicting clinically important outcomes. Further work is required to standardize the technique in nutritionally vulnerable patients, such as those with cancer, before SMUS can be widely adopted as a bedside prognostic tool.


Assuntos
Desnutrição , Doenças Musculares , Cuidados Críticos , Humanos , Unidades de Terapia Intensiva , Músculo Esquelético/diagnóstico por imagem , Estado Nutricional
4.
BMC Public Health ; 22(1): 1427, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35883072

RESUMO

BACKGROUND: Muscle weakness is a key criterion for important age-related conditions, including sarcopenia and frailty. Research suggests lower childhood socioeconomic position (SEP) may be associated with muscle weakness in later life but there is little evidence on associations in younger adults closer to peak muscle strength. We aimed to examine relationships between indicators of SEP in childhood and adulthood and grip strength at age 46y. METHODS: We examined 7,617 participants from the 1970 British Cohort Study with grip strength measurements at 46y. We used sex-specific linear regression models to test associations between five different indicators of SEP in childhood and adulthood (paternal occupational class and parental education levels at age 5 and own occupational class and education level at age 46) and maximum grip strength. Models were adjusted for birth weight, BMI in childhood and adulthood, adult height, disability in childhood, leisure-time physical activity in childhood and adulthood, sedentary behaviour in childhood and adulthood, occupational activity and smoking at age 46. RESULTS: Among women, lower SEP in childhood and adulthood was associated with weaker grip strength even after adjustments for covariates. For example, in fully-adjusted models, women whose mothers had no qualifications at age five had mean grip strength 0.99 kg (95% CI: -1.65, -0.33) lower than women whose mothers were educated to degree and higher. Among men, lower levels of father's education and both adult SEP indicators were associated with stronger grip. The association between own occupational class and grip strength deviated from linearity; men in skilled-manual occupations (i.e. the middle occupational group) had stronger grip than men in the highest occupational group (Difference in means: 1.33 kg (0.60, 2.06)) whereas there was no difference in grip strength between the highest and lowest occupational groups. Adjustment for occupational activity largely attenuated these associations. CONCLUSION: Findings highlight the need to identify age and sex-specific interventions across life to tackle inequalities in important age-related conditions related to weakness.


Assuntos
Força da Mão , Debilidade Muscular , Adulto , Pré-Escolar , Estudos de Coortes , Escolaridade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Classe Social , Fatores Socioeconômicos
5.
Geroscience ; 44(3): 1215-1228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34862585

RESUMO

Long-term exercise training has been considered as an effective strategy to counteract age-related hormonal declines and minimise muscle atrophy. However, human data relating circulating hormone levels with motor nerve function are scant. The aims of the study were to explore associations between circulating sex hormone levels and motor unit (MU) characteristics in older men, including masters athletes competing in endurance and power events. Forty-three older men (mean ± SD age: 69.9 ± 4.6 years) were studied based on competitive status. The serum concentrations of dehydroepiandrosterone (DHEA), total testosterone (T) and estradiol were quantified using liquid chromatography mass spectrometry. Intramuscular electromyographic signals were recorded from vastus lateralis (VL) during 25% of maximum voluntary isometric contractions and processed to extract MU firing rate (FR), and motor unit potential (MUP) features. After adjusting for athletic status, MU FR was positively associated with DHEA levels (p = 0.019). Higher testosterone and estradiol were associated with lower MUP complexity; these relationships remained significant after adjusting for athletic status (p = 0.006 and p = 0.019, respectively). Circulating DHEA was positively associated with MU firing rate in these older men. Higher testosterone levels were associated with reduced MUP complexity, indicating reduced electrophysiological temporal dispersion, which is related to decreased differences in conduction times along axonal branches and/or MU fibres. Although evident in males only, this work highlights the potential of hormone administration as a therapeutic interventional strategy specifically targeting human motor units in older age.


Assuntos
Hormônios Esteroides Gonadais , Testosterona , Idoso , Desidroepiandrosterona , Eletromiografia/métodos , Estradiol , Humanos , Masculino
6.
J Cachexia Sarcopenia Muscle ; 12(4): 973-982, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060717

RESUMO

BACKGROUND: The assessment of muscle mass is a key determinant of the diagnosis of sarcopenia. We introduce for the first time an ultrasound imaging method for diagnosing sarcopenia based on changes in muscle geometric proportions. METHODS: Vastus lateralis muscle fascicle length (Lf) and thickness (Tm) were measured at 35% distal femur length by ultrasonography in a population of 279 individuals classified as moderately active elderly (MAE), sedentary elderly (SE) (n = 109), mobility impaired elderly (MIE) (n = 43), and in adult young controls (YC) (n = 60). The ratio of Lf/Tm was calculated to obtain an ultrasound index of the loss of muscle mass associated with sarcopenia (USI). In a subsample of elderly male individuals (n = 76) in which corresponding DXA measurements were available (MAE, n = 52 and SE, n = 24), DXA-derived skeletal muscle index (SMI, appendicular limb mass/height2 ) was compared with corresponding USI values. RESULTS: For both young and older participants, USI values were found to be independent of sex, height and body mass. USI values were 3.70 ± 0.52 for YC, 4.50 ± 0.72 for the MAE, 5.05 ± 1.11 for the SE and 6.31 ± 1.38 for the MIE, all significantly different between each other (P < 0.0001). Based on the USI Z-scores, with reference to the YC population, the 219 elderly participants were stratified according to their muscle sarcopenic status. Individuals with USI values within a range of 3.70 < USI ≥ 4.23 were classified as non-sarcopenic (prevalence 23.7%), those with USI values within 4.23 < USI ≥ 4.76 were classified as pre-sarcopenic (prevalence 23.7%), those with USI values within 4.76 < USI ≥ 5.29 were classified as moderately sarcopenic (prevalence 15.1%), those with USI values within range 5.29 < USI ≥ 5.82 were classified as sarcopenic (prevalence 27.9%), and those with USI values >5.82 were classified as severely sarcopenic (prevalence 9.6%). The DXA-derived SMI was found to be significantly correlated with USI (r = 0.61, P < 0.0001). Notably, the USI cut-off value for moderate sarcopenia (4.76 a.u.) was found to coincide with the DXA cut-off value of sarcopenia (7.26 kg/m2 ). CONCLUSIONS: We propose a novel, practical, and inexpensive imaging marker of the loss of muscle mass associated with sarcopenia, called the ultrasound sarcopenic index (USI), based on changes in muscle geometric proportions. These changes provide a useful 'signature of sarcopenia' and allow the stratification of individuals according to the presence and severity of muscle sarcopenia. We are convinced that the USI will be a useful clinical tool for confirming the diagnosis of sarcopenia, of which the assessment of muscle mass is a key-component.


Assuntos
Sarcopenia , Adulto , Idoso , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Prevalência , Músculo Quadríceps , Sarcopenia/diagnóstico por imagem , Sarcopenia/epidemiologia , Ultrassonografia
7.
Physiol Rep ; 9(8): e14791, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931983

RESUMO

Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho-physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro-environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross-talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co-culture of immortalized human myoblasts and motor neurons from rat-embryo spinal-cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co-culture devoid of exogenous neural growth factors. To investigate this, an ELISA-based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co-culture with an a-neural muscle culture. The levels of seven neurotrophic factors brain-derived neurotrophic factor (BDNF), glial-cell-line-derived neurotrophic factor (GDNF), insulin-like growth factor-binding protein-3 (IGFBP-3), insulin-like growth factor-1 (IGF-1), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a-neural muscle culture. This indicates that the cross-talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fatores de Crescimento Neural/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Junção Neuromuscular/metabolismo , Ratos
8.
Eur J Surg Oncol ; 47(3 Pt A): 524-532, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32439265

RESUMO

Patients undergoing major cancer interventions such as major surgical resection, chemotherapy, radiotherapy, and immunotherapy are prone to the adverse effects of their cancer, as well as to the side effects of the treatments designed to cure them. The Prehabilitation process supports cancer patients in preparing for the physiological challenges of their cancer treatments, whilst aiming to shorten recovery time, reduce peri-operative complications and improve compliance with non-surgical treatments. Prehabilitation will be most useful in older patients. Greater Manchester Integrated Care system is the first regional system in the UK to introduce delivery of system-wide, large scale physical activity supported multi-modal prehabilitation and recovery programme, Prehab4Cancer as a standard of care for cancer patients. It builds upon the successful implementation of Enhanced Recovery After Surgery + programme to improve surgical care in Greater Manchester. During this review we describe the journey to develop a system wide prehabilitation model for patients with cancer. Prehab4Cancer to date has focused on robust co-design, development, and implementation of an effective service model with attention paid to stakeholder engagement. This has led to receipt of high numbers of referrals from across Greater Manchester for the all the cancer groups involved. The successful implementation of the P4C pathway in GM presents a best practice model that might be adopted by other local and combined authority areas nationally.


Assuntos
Neoplasias/cirurgia , Exercício Pré-Operatório , Idoso , Protocolos Clínicos , Inglaterra , Feminino , Idoso Fragilizado , Humanos , Masculino , Inovação Organizacional , Cuidados Pré-Operatórios
9.
Scand J Med Sci Sports ; 30(11): 2057-2069, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32706412

RESUMO

The aging-related loss of muscle mass is thought to be partly attributable to motor neuron loss and motor unit remodeling that result in fiber type grouping. We examined fiber type grouping in 19- to 85-year-old athletes and non-athletes and evaluated to which extent any observed grouping is explained by the fiber type composition of the muscle. Since regular physical activity may stimulate reinnervation, we hypothesized that fiber groups are larger in master athletes than in age-matched non-athletes. Fiber type grouping was assessed in m. vastus lateralis biopsies from 22 young (19-27 years) and 35 healthy older (66-82 years) non-athletes, and 14 young (20-29 years), 51 middle-aged (38-65 years), and 31 older (66-85 years) athletes. An "enclosed fiber" was any muscle fiber of a particular type surrounded by fibers of the same type only. A fiber type group was defined as a group of fibers with at least one enclosed fiber. Only type II fiber cross-sectional area (FCSA) showed an age-related decline that was greater in athletes (P < .001) than in non-athletes (P = .012). There was no significant age-related effect on fiber group size or fiber group number in athletes or non-athletes, and the observed grouping was similar to that expected from the fiber type composition. At face value, these observations do 1) neither show evidence for an age-related loss and remodeling of motor units nor 2) improved reinnervation with regular physical activity, but 3) histological examination may not reveal the full extent of aging-related motor unit remodeling.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Esportes/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/inervação , Músculo Quadríceps/fisiologia , Adulto Jovem
10.
Medicine (Baltimore) ; 98(1): e13937, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30608424

RESUMO

INTRODUCTION: Intensive care unit-acquired weakness (ICU-AW) is often observed in critically ill patients with prolonged intensive care unit (ICU) stay. We hypothesized that evolving metabolic abnormalities during prolonged ICU stay are reflected by changing nutrient patterns in blood, urine and skeletal muscle, and that these patterns differ in patients with/without ICU-AW and between patients with/without sepsis. METHODS: In a prospective single-center observational trial, we aim to recruit 100 critically ill patients (ICU length of stay ≥ 5 days) with severe sepsis/septic shock ("sepsis group", n = 50) or severe head trauma/intracerebral hemorrhage ("CNS group", n = 50). Patients will be sub-grouped for presence or absence of ICU-AW as determined by the Medical Research Council sum score. Blood and urine samples will be collected and subjected to comprehensive nutrient analysis at different time points by targeted quantitative mass spectrometric methods. In addition, changes in muscular tissue (biopsy, when available), muscular architecture (ultrasound), electrophysiology, body composition analyses (bioimpedance, cerebral magnetic resonance imaging), along with clinical status will be assessed. Patients will be followed-up for 180 and 360 days including assessment of quality of life. DISCUSSION: Key objective of this trial is to assess changes in nutrient pattern in blood and urine over time in critically ill patients with/without ICU-AW by using quantitative nutrient analysis techniques. Peer-reviewed published NAChO data will allow for a better understanding of metabolic changes in critically ill patients on standard liquid enteral nutrition and will likely open up new avenues for future therapeutic and nutritional interventions.


Assuntos
Estado Terminal/terapia , Nutrição Enteral/métodos , Nutrientes/sangue , Adulto , Composição Corporal/fisiologia , Lesões Encefálicas/dietoterapia , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Espectrometria de Massas/instrumentação , Músculos/diagnóstico por imagem , Músculos/patologia , Músculos/fisiologia , Nutrientes/uso terapêutico , Nutrientes/urina , Estudos Prospectivos , Qualidade de Vida , Sepse/dietoterapia
11.
J Cachexia Sarcopenia Muscle ; 8(4): 647-659, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28382740

RESUMO

BACKGROUND: As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. METHODS: Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. RESULTS: There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P < 0.002) in the old people, there was no significant difference in capillary distribution between young and old people, irrespective of sex. The capillary supply to a fibre was primarily determined by fibre size and only to a small extent by oxidative capacity, irrespective of age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. CONCLUSIONS: The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing.


Assuntos
Capilares/citologia , Envelhecimento Saudável/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/irrigação sanguínea , Adulto , Idoso , Envelhecimento/fisiologia , Biópsia , Capilares/patologia , Tamanho Celular , Feminino , Envelhecimento Saudável/patologia , Humanos , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Consumo de Oxigênio/fisiologia , Adulto Jovem
12.
J Cachexia Sarcopenia Muscle ; 8(3): 466-474, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28150387

RESUMO

BACKGROUND: Handgrip strength (HGS) is used to identify individuals with low muscle strength (dynapenia). The influence of the number of attempts on maximal HGS is not yet known and may differ depending on age and health status. This study aimed to assess how many attempts of HGS are required to obtain maximal HGS. METHODS: Three cohorts (939 individuals) differing in age and health status were included. HGS was assessed three times and explored as continuous and dichotomous variable. Paired t-test, intraclass correlation coefficients (ICC) and Bland-Altman analysis were used to test reproducibility of HGS. The number of individuals with misclassified dynapenia at attempts 1 and 2 with respect to attempt 3 were assessed. RESULTS: Results showed the same pattern in all three cohorts. Maximal HGS at attempts 1 and 2 was higher than at attempt 3 on population level (P < 0.001 for all three cohorts). ICC values between all attempts were above 0.8, indicating moderate to high reproducibility. Bland-Altman analysis showed that 41.0 to 58.9% of individuals had the highest HGS at attempt 2 and 12.4 to 37.2% at attempt 3. The percentage of individuals with a maximal HGS above the gender-specific cut-off value at attempt 3 compared with attempts 1 and 2 ranged from 0 to 50.0%, with a higher percentage of misclassification in middle-aged and older populations. CONCLUSIONS: Maximal HGS is dependent on the number of attempts, independent of age and health status. To assess maximal HGS, at least three attempts are needed if HGS is considered to be a continuous variable. If HGS is considered as a discrete variable to assess dynapenia, two attempts are sufficient to assess dynapenia in younger populations. Misclassification should be taken into account in middle-aged and older populations.


Assuntos
Força da Mão , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Transversais , Avaliação Geriátrica , Nível de Saúde , Humanos , Pessoa de Meia-Idade , Força Muscular , Reprodutibilidade dos Testes , Adulto Jovem
13.
J Physiol ; 593(24): 5361-85, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369674

RESUMO

KEY POINTS: It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention. Our findings support the hypotheses that the specific force of muscle fibres decreased following unilateral lower limb suspension (ULLS) and returned to normal after 3 weeks of active recovery as a result of a loss and recovery of myosin and actin content. Furthermore, muscle fibres went through extensive qualitative changes in muscle protein pattern following ULLS, and these were reversed by active recovery. Resistance training was very effective in restoring both muscle mass and qualitative muscle changes, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. ABSTRACT: Following disuse, muscle fibre function goes through adaptations such as a loss of specific force (PO /CSA) and an increase in unloaded shortening velocity, which could be a result of both quantitative changes (i.e. atrophy) and qualitative changes in protein pattern. The underlying mechanisms remain to be clarified. In addition, little is known about the recovery of muscle mass and strength following disuse. In the present study, we report an extensive dataset describing, in detail,the functional and protein content adaptations of skeletal muscle in response to both disuse and re-training. Eight young healthy subjects were subjected to 3 weeks of unilateral lower limb suspension (ULLS), a widely used human model of disuse skeletal muscle atrophy. Needle biopsies samples were taken from the vastus lateralis muscle Pre-ULLS, Post-ULLS and after 3 weeks of recovery during which heavy resistance training was performed. After disuse, cross-sectional area (CSA), PO /CSA and myosin concentration (MC) decreased in both type 1 and 2A skinned muscle fibres. After recovery, CSA and MC returned to levels comparable to those observed before disuse, whereas Po/CSA and unloaded shortening velocity reached a higher level. Myosin heavy chain isoform composition of muscle samples did not differ among the experimental groups. To study the mechanisms underlying such adaptations, a two-dimensional proteomic analysis was performed. ULLS induced a reduction of myofibrillar, metabolic (glycolytic and oxidative) and anti-oxidant defence system protein content. Resistance training was very effective in counteracting ULLS-induced alterations, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo , Treinamento Resistido , Actinas/metabolismo , Adolescente , Adulto , Humanos , Perna (Membro)/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Miosinas/metabolismo , Recuperação de Função Fisiológica , Restrição Física/efeitos adversos
14.
Biogerontology ; 14(3): 261-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666343

RESUMO

It is known that adipose tissue mass increases with age, and that a number of hormones, collectively called adipokines, are produced by adipose tissue. For most of them it is not known whether their plasmatic levels change with age. Moreover, it is known that adipose tissue infiltration in skeletal muscle is related to sarcopenia and loss of muscle strength. In this study we investigated the age-related changes of representative adipokines and insulin-like growth factor (IGF)-1 and their effect on muscle strength. We studied the association between circulating levels of adiponectin, leptin, resistin and IGF-1 and muscle strength. This cross-sectional study included 412 subjects of different age (152 subjects aged 18-30 years and 260 subjects aged 69-81 years) recruited within the framework of the European research network project "Myoage". The levels of adiponectin (both in male and female subjects) and leptin (only in males) were significantly higher in old subjects compared to young, while those of IGF-1 were lower in old subjects. In old subjects adiponectin, resistin and the resistin/IGF-1 ratio (but not IGF-1 alone) were inversely associated with quadriceps torque, while only adiponectin was inversely associated with handgrip strength independently from percentage of fat mass, height, age, gender and geographical origin. The ratio of leptin to adiponectin was directly associated with handgrip strength in both young and old subjects. These results suggest that in humans the age-associated loss of strength is associated with the levels of representative adipokines and IGF-1.


Assuntos
Adipocinas/sangue , Envelhecimento/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adiponectina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Força da Mão/fisiologia , Humanos , Leptina/sangue , Masculino , Resistina/sangue , Transdução de Sinais/fisiologia , Adulto Jovem
15.
Biogerontology ; 14(3): 273-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666344

RESUMO

Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle. Our study, along with other studies, demonstrated that although the regenerative program can also be impaired by the limited proliferative capacity of satellite cells, this limit is not reached during normal aging, and it is more likely that the restricted muscle repair program in aging is presumably due to missing signals that usually render the damaged muscle a permissive environment for regenerative activity.


Assuntos
Envelhecimento/fisiologia , Proliferação de Células , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Telômero/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
16.
Exp Physiol ; 94(6): 684-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19218358

RESUMO

Considerable variability exists between people in their health- and performance-related adaptations to conventional endurance training. We hypothesized that some of this variability might be due to differences in the training stimulus received by the working muscles. In 71 young sedentary women we observed large variations in the ratio of one-leg cycling muscle aerobic capacity (V(O2peak)) to two-leg cycling whole-body maximal oxygen uptake (V(O2max); Ratio(1:2); range 0.58-0.96). The variability in Ratio(1:2) was primarily due to differences between people in one-leg V(O2peak) (r = 0.71, P < 0.0005) and was not related to two-leg V(O2max) (r = 0.15, P = 0.209). Magnetic resonance imaging (n = 30) and muscle biopsy sampling (n = 20) revealed that one-leg V(O2peak) was mainly determined by muscle volume (r = 0.73, P < 0.0005) rather than muscle fibre type or oxidative capacity. A high one-leg V(O2peak) was associated with favourable lipoprotein profiles (P = 0.033, n = 24) but this was not the case for two-leg V(O2max). Calculations based on these data suggest that conventional two-leg exercise at 70% V(O2max) requires subjects with the lowest Ratio(1:2) to work their legs at 60% of single-leg V(O2peak), whilst those with the highest Ratio(1:2) work their legs at only 36% of maximum. It was concluded that endurance training carried out according to current guidelines will result in highly variable training stimuli for the leg muscles and variable magnitudes of adaptation. These conclusions have implications for the prescription of exercise to improve health and for investigations into the genetic basis of muscle adaptations.


Assuntos
Ciclismo/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Aerobiose , Teste de Esforço , Feminino , Humanos , Perna (Membro) , Lipídeos/sangue , Proteínas Musculares/metabolismo , Consumo de Oxigênio , Músculo Quadríceps/anatomia & histologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA