Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 524: 279-288, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655147

RESUMO

HYPOTHESIS: Polyoxyethylene (20) sorbitan monooleate (Tween 80) can be incorporated into the gel-like phase formed by L-α-phosphatidylcholine (PC) and dioctyl sulfosuccinate sodium salt (DOSS) for potential application as a gel-like dispersant for oil spill treatment. Such gel-like dispersants offer advantages over existing liquid dispersants for mitigating oil spill impacts. EXPERIMENTS: Crude oil-in-saline water emulsions stabilized by the surfactant system were characterized by optical microscopy and turbidity measurements while interfacial tensions were measured by the spinning drop and pendant drop techniques. The microstructure of the gel-like surfactant mesophase was elucidated using small angle neutron scattering (SANS), cryo scanning electron microscopy (cryo-SEM), and 31P nuclear magnetic resonance (NMR) spectroscopy. FINDINGS: The gel-like phase consisting of PC, DOSS and Tween 80 is positively buoyant on water and breaks down on contact with floating crude oil layers to release the surfactant components. The surfactant mixture effectively lowers the crude oil-saline water interfacial tension to the 10-2 mN/m range, producing stable crude oil-in-saline water emulsions with an average droplet size of about 7.81 µm. Analysis of SANS, cryo-SEM and NMR spectroscopy data reveals that the gel-like mesophase has a lamellar microstructure that transition from rolled lamellar sheets to onion-like, multilamellar structures with increasing Tween 80 content.

2.
ACS Appl Mater Interfaces ; 10(16): 13542-13551, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620856

RESUMO

Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl3, to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.

3.
Langmuir ; 33(11): 2780-2789, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28248521

RESUMO

We report the ability of hydrophobically modified polypeptoids (HMPs), which are amphiphilic pseudopeptidic macromolecules, to connect across lipid bilayers and thus form layered structures on liposomes. The HMPs are obtained by attaching hydrophobic decyl groups at random points along the polypeptoid backbone. Although native polypeptoids (with no hydrophobes) have no effect on liposomal structure, the HMPs remodel the unilamellar liposomes into structures with comparable diameters but with multiple concentric bilayers. The transition from single-bilayer to multiple-bilayer structures is revealed by small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). The spacing between bilayers is found to be relatively uniform at ∼6.7 nm. We suggest that the amphiphilic nature of the HMPs explains the formation of multibilayered liposomes; i.e., the HMPs insert their hydrophobic tails into adjacent bilayers and thereby serve as the connective glue between bilayers. At higher HMP concentrations, the liposomes are entirely disrupted into much smaller micellelike structures through extensive hydrophobe insertion. Interestingly, these small structures can reattach to fresh unilamellar liposomes and self-assemble to form new two-bilayer liposomes. The two-bilayer liposomes in our study are reminiscent of two-bilayer organelles such as the nucleus in eukaryotic cells. The observations have significance in designing new nanoscale drug delivery carriers with multiple drugs on separate lipid bilayers and extending liposome circulation times with entirely biocompatible materials.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão
4.
Langmuir ; 30(45): 13533-41, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346266

RESUMO

Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

5.
ACS Appl Mater Interfaces ; 5(9): 3572-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23527784

RESUMO

The stability of crude oil droplets formed by adding chemical dispersants can be considerably enhanced by the use of the biopolymer, hydrophobically modified chitosan. Turbidimetric analyses show that emulsions of crude oil in saline water prepared using a combination of the biopolymer and the well-studied chemical dispersant (Corexit 9500A) remain stable for extended periods in comparison to emulsions stabilized by the dispersant alone. We hypothesize that the hydrophobic residues from the polymer preferentially anchor in the oil droplets, thereby forming a layer of the polymer around the droplets. The enhanced stability of the droplets is due to the polymer layer providing an increase in electrostatic and steric repulsions and thereby a large barrier to droplet coalescence. Our results show that the addition of hydrophobically modified chitosan following the application of chemical dispersant to an oil spill can potentially reduce the use of chemical dispersants. Increasing the molecular weight of the biopolymer changes the rheological properties of the oil-in-water emulsion to that of a weak gel. The ability of the biopolymer to tether the oil droplets in a gel-like matrix has potential applications in the immobilization of surface oil spills for enhanced removal.


Assuntos
Quitosana/química , Recuperação e Remediação Ambiental/métodos , Poluição por Petróleo/análise , Petróleo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Peso Molecular , Água/química
6.
Environ Sci Technol ; 45(5): 1949-54, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21299241

RESUMO

Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.


Assuntos
Carbono/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanocompostos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Adsorção , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura
7.
Environ Sci Technol ; 42(12): 4494-9, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605576

RESUMO

Spherical silica particles containing nanoscale zerovalent iron were synthesized through an aerosol-assisted process. These particles are effective for groundwater remediation, with the environmentally benign silica particles serving as effective carriers for nanoiron transport. Incorporation of iron into porous sub-micrometer silica particles protects ferromagnetic iron nanoparticles from aggregation and may increase their subsurface mobility. Additionally, the presence of surface silanol groups on silica particles allows control of surface properties via silanol modification using organic functional groups. Aerosolized silica particles with functional alkyl moieties, such as ethyl groups on the surface, clearly adsorb solubilized trichloroethylene (TCE) in water. These materials may therefore act as adsorbents which have coupled reactivity characteristics. The nanoscale iron/silica composite particles with controlled surface properties have the potential to be efficiently applied for in situ source depletion and in the design of permeable reactive barriers.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Nanotecnologia , Tamanho da Partícula
8.
Environ Sci Technol ; 42(23): 8871-6, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192811

RESUMO

Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through soil. In this paper we report the transport characteristics of nanoscale zerovalent iron entrapped in porous silica particles and prepared through an aerosol-assisted process. The entrapment of iron nanoparticles into the silica matrix prevents their aggregation while maintaining the particles' reactivity. Furthermore, the silica particles are functionalized with alkyl groups and are extremely efficient in adsorbing dissolved trichloroethylene (TCE). Because of synthesis through the aerosol route, the particles are of the optimal size range (0.1-1 microm) for mobility through sediments. Column and capillary transport experiments confirm that the particles move far more effectivelythrough model soils than commercially available uncoated nanoscale reactive iron particles. Microcapillary experiments indicate that the particles partition to the interface of TCE droplets, further enhancing their potential for dense non-aqueous-phase liquid source-zone remediation.


Assuntos
Recuperação e Remediação Ambiental , Ferro/química , Movimento (Física) , Nanocompostos/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Adsorção , Aerossóis/química , Filtração , Nanocompostos/ultraestrutura , Tamanho da Partícula
9.
Langmuir ; 23(9): 5143-7, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17397201

RESUMO

Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Dióxido de Silício/química , Tensoativos/química , Microesferas , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA