Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 19(9): e13180, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720752

RESUMO

Skeletal muscle dysfunction in survivors of pneumonia disproportionately affects older individuals in whom it causes substantial morbidity. We found that skeletal muscle recovery was impaired in old compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II expression, followed by a proliferation of muscle satellite cells. These findings were absent in old mice and in mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from old compared with young mice showed downregulation of pathways associated with phagocytosis and proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle macrophages from old mice failed to downregulate MHCII expression during recovery from influenza A virus-induced pneumonia and showed impaired phagocytic function in vitro. Like old animals, mice deficient in the phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation, or satellite cell proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in old mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Vírus da Influenza A/patogenicidade , Macrófagos/metabolismo , Músculo Esquelético/fisiopatologia , Fagocitose/fisiologia , Pneumonia/patologia , Animais , Camundongos
2.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601718

RESUMO

Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Fibrose Pulmonar , Animais , Fibrose , Humanos , Macrófagos/patologia , Macrófagos Alveolares , Camundongos , Monócitos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos
3.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554520

RESUMO

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Assuntos
Células Cultivadas/patologia , Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Análise de Sequência de RNA , Células-Tronco/patologia , Transcriptoma , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino
4.
Cell Metab ; 29(2): 335-347.e5, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30318339

RESUMO

Urban particulate matter air pollution induces the release of pro-inflammatory cytokines including interleukin-6 (IL-6) from alveolar macrophages, resulting in an increase in thrombosis. Here, we report that metformin provides protection in this murine model. Treatment of mice with metformin or exposure of murine or human alveolar macrophages to metformin prevented the particulate matter-induced generation of complex III mitochondrial reactive oxygen species, which were necessary for the opening of calcium release-activated channels (CRAC) and release of IL-6. Targeted genetic deletion of electron transport or CRAC channels in alveolar macrophages in mice prevented particulate matter-induced acceleration of arterial thrombosis. These findings suggest metformin as a potential therapy to prevent some of the premature deaths attributable to air pollution exposure worldwide.


Assuntos
Poluição do Ar/efeitos adversos , Pneumopatias/tratamento farmacológico , Macrófagos Alveolares/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , Material Particulado/toxicidade , Trombose/tratamento farmacológico , Animais , Linhagem Celular , Citocinas/metabolismo , Transporte de Elétrons , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
7.
Oncotarget ; 8(63): 106171-106172, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29290937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA