RESUMO
High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.
Assuntos
Glioma , Neurônios , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Camundongos , Animais , Neurônios/metabolismo , Neurônios/patologia , Linhagem Celular Tumoral , Criança , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas de Ligação a DNARESUMO
BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.
Assuntos
Barreira Hematoencefálica , Glioma , Humanos , Ratos , Criança , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Ratos Sprague-Dawley , Tronco Encefálico , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Glioma/radioterapia , Microbolhas , EncéfaloRESUMO
PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.
Assuntos
Glioma , Microglia , Animais , Glioma/radioterapia , Glioma/imunologia , Glioma/patologia , Camundongos , Microglia/efeitos da radiação , Microglia/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Receptor de Interferon alfa e beta/genética , Camundongos Endogâmicos C57BL , Análise de Célula Única/métodos , Células Dendríticas/imunologia , Células Dendríticas/efeitos da radiação , Macrófagos/imunologiaRESUMO
Patients with diffuse midline gliomas that are H3K27 altered (DMG) display a dismal prognosis. However, the molecular mechanisms underlying DMG tumorigenesis remain poorly defined. Here we show that SMARCA4, the catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex, is essential for the proliferation, migration, and invasion of DMG cells and tumor growth in patient-derived DMG xenograft models. SMARCA4 colocalizes with SOX10 at gene regulatory elements to control the expression of genes involved in cell growth and the extracellular matrix (ECM). Moreover, SMARCA4 chromatin binding is reduced upon depletion of SOX10 or H3.3K27M, a mutation occurring in about 60% DMG tumors. Furthermore, the SMARCA4 occupancy at enhancers marked by both SOX10 and H3K27 acetylation is reduced the most upon depleting the H3.3K27M mutation. Taken together, our results support a model in which epigenome reprogramming by H3.3K27M creates a dependence on SMARCA4-mediated chromatin remodeling to drive gene expression and the pathogenesis of H3.3K27M DMG. SIGNIFICANCE: DMG is a deadly pediatric glioma currently without effective treatments. We discovered that the chromatin remodeler SMARCA4 is essential for the proliferation of DMG with H3K27M mutation in vitro and in vivo, identifying a potentially novel therapeutic approach to this disease. See related commentary by Beytagh and Weiss, p. 2730. See related article by Panditharatna et al., p. 2880. This article is highlighted in the In This Issue feature, p. 2711.
Assuntos
Glioma , Histonas , Animais , Humanos , Criança , Histonas/genética , Histonas/metabolismo , Epigenoma , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Cromatina , Mutação , Células-Tronco Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Drug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.