Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39204345

RESUMO

Understanding the role of chemokine receptors in health and disease has been of increasing interest in recent years. Chemokine receptor CXCR4 has been extensively studied because of its defined role in immune cell trafficking, HIV infection, inflammatory diseases, and cancer progression. We have developed high affinity rigidified CXCR4 antagonists that incorporate metal ions to optimize the binding interactions with the aspartate side chains at the extracellular surface of the CXCR4 chemokine receptor and increase the residence time. Cross- and side-bridged tetraazamacrocylic complexes offer significant advantages over the non-bridged molecular structures in terms of receptor affinity, potential for radiolabelling, and use in therapeutic applications. Our investigation has been extended to the influence of the ring size on bridged tetraazamacrocyclic compounds with the addition of two novel chelators (bis-cross-bridged homocyclen and bis-cross-bridged cyclen) to compare to the bis-bridged cyclam, along with novel metal complexes formed with copper(II) or zinc(II). The in vitro biological assays showed that all of the zinc(II) complexes are high affinity antagonists with a marked increase in CXCR4 selectivity for the bis-cross-bridged cyclen complex, whereas the properties of the copper(II) complexes are highly dependent on metal ion geometry. X-ray crystal structural data and DFT computational studies allow for the rationalisation of the relative affinities and the aspartate residue interactions on the protein surface. Changing the ring size from 14-membered can increase the selectivity for the CXCR4 receptor whilst retaining potent inhibitory activity, improving the key pharmacological characteristics.

2.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439632

RESUMO

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Benzilaminas , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Receptores CXCR4/antagonistas & inibidores
4.
Inorg Chem ; 62(50): 20844-20857, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38055373

RESUMO

With the aim of obtaining improved molecular scaffolds for 18F binding to use in PET imaging, gallium(III) and iron(III) complexes with a macrocyclic bis-phosphinate chelator have been synthesized and their properties, including their fluoride binding ability, investigated. Reaction of Bn-tacn (1-benzyl-1,4,7-triazacyclononane) with paraformaldehyde and PhP(OR)2 (R = Me or Et) in refluxing THF, followed by acid hydrolysis, yields the macrocyclic bis(phosphinic acid) derivative, H2(Bn-NODP) (1-benzyl-4,7-phenylphosphinic acid-1,4,7-triazacyclononane), which is isolated as its protonated form, H2(Bn-NODP)·2HCl·4H2O, at low pH (HClaq), its disodium salt, Na2(Bn-NODP)·5H2O at pH 12 (NaOHaq), or the neutral H2(Bn-NODP) under mildly basic conditions (Et3N). A crystal structure of H2(Bn-NODP)·2HCl·H2O confirmed the ligand's identity. The mononuclear [GaCl(Bn-NODP)] complex was prepared by treatment of either the HCl or sodium salt with Ga(NO3)3·9H2O or GaCl3, while treatment of H2(Bn-NODP)·2HCl·4H2O with FeCl3 in aqueous HCl gives [FeCl(Bn-NODP)]. The addition of 1 mol. equiv of aqueous KF to these chloro complexes readily forms the [MF(Bn-NODP)] analogues. Spectroscopic analysis on these complexes confirms pentadentate coordination of the doubly deprotonated (bis-phosphinate) macrocycle via its N3O2 donor set, with the halide ligand completing a distorted octahedral geometry; this is further confirmed through a crystal structure analysis on [GaF(Bn-NODP)]·4H2O. The complex adopts the geometric isomer in which the phosphinate arms are coordinated unsymmetrically (isomer 1) and with the stereochemistry of the three N atoms of the tacn ring in the RRS configuration, denoted (N)RRS, and the phosphinate groups in the RR stereochemistry, denoted (P)RR, (isomer 1/RR), together with its (N)SSR (P)SS enantiomer. The greater thermodynamic stability of isomer 1/RR over the other possible isomers is also indicated by density functional theory (DFT) calculations. Radiofluorination experiments on the [MCl(Bn-NODP)] complexes in partially aqueous MeCN/NaOAcaq (Ga) or EtOH (Ga or Fe; i.e. without buffer) with 18F- target water at 80 °C/10 min lead to high radiochemical incorporation (radiochemical yields 60-80% at 1 mg/mL, or ∼1.5 µM, concentration of the precursor). While the [Fe18F(n-NODP)] is unstable (loss of 18F-) in both H2O/EtOH and PBS/EtOH (PBS = phosphate buffered saline), the [Ga18F(Bn-NODP)] radioproduct shows excellent stability, RCP = 99% at t = 4 h (RCP = radiochemical purity) when formulated in 90%:10% H2O/EtOH and ca. 95% RCP over 4 h when formulated in 90%:10% PBS/EtOH. This indicates that the new "GaIII(Bn-NODP)" moiety is a considerably superior fluoride binding scaffold than the previously reported [Ga18F(Bn-NODA)] (Bn-NODA = 1-benzyl-4,7-dicarboxylate-1,4,7-triazacyclononane), which undergoes rapid and complete hydrolysis in PBS/EtOH (refer to Chem. Eur. J. 2015, 21, 4688-4694).

5.
Mol Imaging Biol ; 23(6): 854-864, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013395

RESUMO

PURPOSE: (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. PROCEDURES: An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. RESULTS: The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/µmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. CONCLUSIONS: We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Fluoretos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos
6.
J Nucl Med ; 57(5): 765-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26635342

RESUMO

UNLABELLED: Locoregional recurrence of breast cancer poses significant clinical problems because of frequent inoperability once the chest wall is involved. Early detection of recurrence by molecular imaging agents against therapeutically targetable receptors, such as c-Met, would be of potential benefit. The aim of this study was to assess (18)F-AH113804, a peptide-based molecular imaging agent with high affinity for human c-Met, for the detection of early-stage locoregional recurrence in a human basal-like breast cancer model, HCC1954. METHODS: HCC1954 tumor-bearing xenograft models were established, and (18)F-AH113804 was administered. Distribution of radioactivity was determined via PET at 60 min after radiotracer injection. PET and CT images were acquired 10 d after tumor inoculation, to establish baseline distribution and uptake, and then on selected days after surgical tumor resection. CT images and caliper were used to determine the tumor volume. Radiotracer uptake was assessed by (18)F-AH113804 PET imaging. c-Met expression was assessed by immunofluorescence imaging of tumor samples and correlated with (18)F-AH113804 PET imaging results. RESULTS: Baseline uptake of (18)F-AH113804, determined in tumor-bearing animals after 10 d, was approximately 2-fold higher in the tumor than in muscle tissue or the contralateral mammary fat pad. The tumor growth rate, determined from CT images, was comparable between the animals with recurrent tumors, with detection of tumors of low volume (<10 mm(3)) only possible by day 20 after tumor resection. (18)F-AH113804 PET detected local tumor recurrence as early as 6 d after surgery in the recurrent tumor-bearing animals and exhibited significantly higher (18)F-AH113804 uptake (in comparison to mammary fatty tissue), with a target-to-background (muscle) ratio of approximately 3:1 (P < 0.01). The c-Met expression of individual resected tumor samples, determined by immunofluorescence, correlated with the respective (18)F-AH113804 imaging signals (r = 0.82, P < 0.05). CONCLUSION: (18)F-AH113804 PET provides a new diagnostic tool for the detection of c-Met-expressing primary tumor and has potential utility for the detection of locoregional recurrence from an early stage.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Estadiamento de Neoplasias , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA