Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 44(12): 1276-1285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32644199

RESUMO

Use of extracorporeal membrane oxygenation (ECMO) is expanding, however, it is still associated with significant morbidity and mortality. Activation of inflammatory and innate immune responses and hemostatic alterations contribute to complications. Hyperoxia may play a role in exacerbating these responses. Nine ex vivo ECMO circuits were tested using fresh healthy human whole blood, with two oxygen levels: 21% inspired fraction of oxygen (FiO2 ; mild hyperoxia; n = 5) and 100% FiO2 (severe hyperoxia; n = 4). Serial blood samples were taken for analysis of platelet aggregometry, leukocyte activation, inflammatory, and oxidative stress markers. ECMO resulted in reduced adenosine diphosphate- (P < .05) and thrombin receptor activating peptide-induced (P < .05) platelet aggregation, as well as increasing levels of the neutrophil activation marker, neutrophil elastase (P = .013). Additionally, levels of the inflammatory chemokine interleukin-8 were elevated (P < .05) and the activity of superoxide dismutase, a marker of oxidative stress, was increased (P = .002). Hyperoxia did not augment these responses, with no significant differences detected between mild and severe hyperoxia. Our ex vivo model of ECMO revealed that the circuit itself triggers a pro-inflammatory and oxidative stress response, however, exposure to supra-physiologic oxygen does not amplify that response. Extended-duration studies and inclusion of an endothelial component could be beneficial in characterizing longer term changes.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Hiperóxia/imunologia , Agregação Plaquetária/imunologia , Plaquetas/imunologia , Humanos , Hiperóxia/sangue , Hiperóxia/diagnóstico , Inflamação/sangue , Inflamação/imunologia , Leucócitos/imunologia , Estresse Oxidativo/imunologia , Índice de Gravidade de Doença
2.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1202-L1212, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815258

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a life-saving treatment for patients with severe refractory cardiorespiratory failure. Exposure to the ECMO circuit is thought to trigger/exacerbate inflammation. Determining whether inflammation is the result of the patients' underlying pathologies or the ECMO circuit is difficult. To discern how different insults contribute to the inflammatory response, we developed an ovine model of lung injury and ECMO to investigate the impact of smoke-induced lung injury and ECMO in isolation and cumulatively on pulmonary and circulating inflammatory cells, cytokines, and tissue remodeling. Sheep receiving either smoke-induced acute lung injury (S-ALI) or sham injury were placed on veno-venous (VV) ECMO lasting either 2 or 24 h, with controls receiving conventional ventilation only. Lung tissue, bronchoalveolar fluid, and plasma were analyzed by RT-PCR, immunohistochemical staining, and zymography to assess inflammatory cells, cytokines, and matrix metalloproteinases. Pulmonary compliance decreased in sheep with S-ALI placed on ECMO with increased numbers of infiltrating neutrophils, monocytes, and alveolar macrophages compared with controls. Infiltration of neutrophils was also observed with S-ALI alone. RT-PCR studies showed higher expression of matrix metalloproteinases 2 and 9 in S-ALI plus ECMO, whereas IL-6 was elevated at 2 h. Zymography revealed higher levels of matrix metalloproteinase 2. Circulating plasma levels of IL-6 were elevated 1-2 h after commencement of ECMO alone. These data show that the inflammatory response is enhanced when a host with preexisting pulmonary injury is placed on ECMO, with increased infiltration of neutrophils and macrophages, the release of inflammatory cytokines, and upregulation of matrix metalloproteinases.


Assuntos
Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Oxigenação por Membrana Extracorpórea , Pneumonia/complicações , Pneumonia/patologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/enzimologia , Animais , Biomarcadores/metabolismo , Brônquios/patologia , Lavagem Broncoalveolar , Complacência (Medida de Distensibilidade) , Edema/complicações , Edema/patologia , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imuno-Histoquímica , Interleucina-1beta/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Contagem de Leucócitos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Tamanho do Órgão , Pneumonia/sangue , Pneumonia/enzimologia , Fibrose Pulmonar/sangue , Fibrose Pulmonar/complicações , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ovinos , Fumar/efeitos adversos
3.
Crit Care ; 19: 164, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25888449

RESUMO

INTRODUCTION: Vital drugs may be degraded or sequestered in extracorporeal membrane oxygenation (ECMO) circuits, with lipophilic drugs considered to be particularly vulnerable. However, the circuit effects on protein-bound drugs have not been fully elucidated. The aim of this experimental study was to investigate the influence of plasma protein binding on drug disposition in ex vivo ECMO circuits. METHODS: Four identical ECMO circuits comprising centrifugal pumps and polymethylpentene oxygenators and were used. The circuits were primed with crystalloid, albumin and fresh human whole blood and maintained at a physiological pH and temperature for 24 hours. After baseline sampling, known quantities of study drugs (ceftriaxone, ciprofloxacin, linezolid, fluconazole, caspofungin and thiopentone) were injected into the circuit to achieve therapeutic concentrations. Equivalent doses of these drugs were also injected into four polypropylene jars containing fresh human whole blood for drug stability testing. Serial blood samples were collected from the controls and the ECMO circuits over 24 hours, and the concentrations of the study drugs were quantified using validated chromatographic assays. A regression model was constructed to examine the relationship between circuit drug recovery as the dependent variable and protein binding and partition coefficient (a measure of lipophilicity) as explanatory variables. RESULTS: Four hundred eighty samples were analysed. There was no significant loss of any study drugs in the controls over 24 hours. The average drug recoveries from the ECMO circuits at 24 hours were as follows: ciprofloxacin 96%, linezolid 91%, fluconazole 91%, ceftriaxone 80%, caspofungin 56% and thiopentone 12%. There was a significant reduction of ceftriaxone (P = 0.01), caspofungin (P = 0.01) and thiopentone (P = 0.008) concentrations in the ECMO circuit at 24 hours. Both protein binding and partition coefficient were highly significant, with the model possessing a high coefficient of determination (R (2) = 0.88, P <0.001). CONCLUSIONS: Recovery of the highly protein-bound drugs ceftriaxone, caspofungin and thiopentone was significantly lower in the ECMO circuits at 24 hours. For drugs with similar lipophilicity, the extent of protein binding may determine circuit drug loss. Future clinical population pharmacokinetic studies should initially be focused on drugs with greater lipophilicity and protein binding, and therapeutic drug monitoring should be strongly considered with the use of such drugs.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Caspofungina , Ceftriaxona/efeitos adversos , Ceftriaxona/farmacocinética , Equinocandinas/efeitos adversos , Equinocandinas/farmacocinética , Oxigenação por Membrana Extracorpórea/mortalidade , Fluconazol/efeitos adversos , Fluconazol/farmacocinética , Humanos , Lipopeptídeos , Modelos Teóricos , Plasma/química , Tiopental/efeitos adversos , Tiopental/farmacocinética
4.
J Trace Elem Med Biol ; 30: 4-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25744503

RESUMO

The purpose of this study was to determine the effects of smoke induced acute lung injury (S-ALI), extracorporeal membrane oxygenation (ECMO) and transfusion on oxidative stress and plasma selenium levels. Forty ewes were divided into (i) healthy control (n=4), (ii) S-ALI control (n=7), (iii) ECMO control (n=7), (iv) S-ALI+ECMO (n=8) and (v) S-ALI+ECMO+packed red blood cell (PRBC) transfusion (n=14). Plasma thiobarbituric acid reactive substances (TBARS), selenium and glutathione peroxidase (GPx) activity were analysed at baseline, after smoke injury (or sham) and 0.25, 1, 2, 6, 7, 12 and 24h after initiation of ECMO. Peak TBARS levels were similar across all groups. Plasma selenium decreased by 54% in S-ALI sheep (1.36±0.20 to 0.63±0.27µmol/L, p<0.0001), and 72% in sheep with S-ALI+ECMO at 24h (1.36±0.20 to 0.38±0.19, p<0.0001). PRBC transfusion had no effect on TBARS, selenium levels or glutathione peroxidase activity in plasma. While ECMO independently increased TBARS in healthy sheep to levels which were similar to the S-ALI control, the addition of ECMO after S-ALI caused a negligible increase in TBARS. This suggests that the initial lung injury was the predominant feature in the TBARS response. In contrast, the addition of ECMO in S-ALI sheep exacerbated reductions in plasma selenium beyond that of S-ALI or ECMO alone. Clinical studies are needed to confirm the extent and duration of selenium loss associated with ECMO.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/etiologia , Transfusão de Sangue , Oxigenação por Membrana Extracorpórea , Estresse Oxidativo , Selênio/sangue , Animais , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/sangue , Ovinos , Fumar/efeitos adversos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
ASAIO J ; 58(3): 217-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22460776

RESUMO

Many complications occurring after cardiac surgery are attributed to an acute increase in reactive oxygen and reactive nitrogen species, which under normal conditions are balanced by the antioxidant response. Two key enzymes of the antioxidant response, glutathione peroxidase (GPx) and superoxide dismutase (SOD), rely on trace elements for normal function. It was hypothesized that circulation of blood through the cardiopulmonary bypass (CPB) circuit would 1) reduce trace element levels and antioxidant function, 2) increase oxidative stress, and that 3) prepriming circuits with albumin would ameliorate trace element loss. This hypothesis was investigated by circulating fresh human whole blood in an in vitro CPB circuit. Plasma selenium, copper, and zinc levels were measured, as were SOD and GPx and oxidative stress by thiobarbituric acid reactive substances (TBARS). In spite of significant decreases in copper and zinc levels, SOD levels increased with time. Significant decreases in selenium were associated with a trend to increase TBARS but no change in GPx. Prepriming with albumin provided no benefit as it did not reduce trace element loss nor alter levels of oxidative stress. This study confirms that CPB circuits cause significant depletion of trace elements (selenium, copper, and zinc) necessary to maintain redox homeostasis. The loss of trace elements is a potential contributor to cardiac surgical morbidities, and further studies in the cardiac patient population are needed to investigate this.


Assuntos
Antioxidantes/análise , Ponte Cardiopulmonar , Glutationa Peroxidase/sangue , Superóxido Dismutase/sangue , Oligoelementos/sangue , Humanos , Estresse Oxidativo , Albumina Sérica/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA