Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lipids ; 53(3): 279-290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29663407

RESUMO

We hypothesized that consumption of saturated fatty acids in the form of high-fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground-beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4-week washout period. The 25F and 18F ground-beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground-beef increased only the intake of oleic acid (p < 0.05). The ground-beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground-beef decreased very low-density lipoprotein C concentrations and increased particle diameters and low-density lipoprotein (LDL)-I-C and LDL-II-C concentrations (p < 0.05). The ground-beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein-1, and LDL receptor (LDLR) (p < 0.05). The ground-beef 18F increased mRNA levels for stearoyl-CoA desaturase-1 (p < 0.05). We conclude that the increased LDL particle size and LDL-I-C and LDL-II-C concentrations following the 25F ground-beef intervention may have been caused by decreased hepatic LDLR gene expression.


Assuntos
Dieta Hiperlipídica , Leucócitos Mononucleares/metabolismo , Receptores X do Fígado/genética , Carne Vermelha/análise , Transportador 1 de Cassete de Ligação de ATP/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Idoso , Animais , Ácido Araquidônico/sangue , Bovinos , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Lipoproteínas LDL/sangue , Receptores X do Fígado/sangue , Masculino , Pessoa de Meia-Idade , Ácido Oleico/sangue , Ácido Palmítico/sangue , Receptores de LDL/sangue , Receptores de LDL/genética , Ácidos Esteáricos/sangue , Estearoil-CoA Dessaturase/sangue , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/sangue , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
2.
Exp Gerontol ; 63: 1-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25572013

RESUMO

Adiponectin, an adipocyte-derived protein, exerts anti-atherosclerotic effects on the vascular endothelium. Recently adiponectin protein has been reported in murine vascular endothelial cells, however, whether adiponectin is present in human vascular endothelial cells remains unexplored. We sought to examine 1) adiponectin protein in vascular endothelial cells collected from older adults free of overt cardiovascular disease; 2) the relation between endothelial cell adiponectin and in vivo vascular endothelial function; and 3) the relation between endothelial cell adiponectin, circulating (plasma) adiponectin and related factors. We measured vascular endothelial function (brachial artery flow-mediated dilation using ultrasonography), vascular endothelial cell adiponectin (biopsy coupled with quantitative immunofluorescence) and circulating adiponectin (Mercodia, ELISA) in older, sedentary, non-smoking, men and women (55-79 years). We found that higher endothelial cell adiponectin was related with greater flow-mediated dilation (r = 0.43, P < 0.05) and greater flow-mediated dilation normalized for shear stress (r = 0.56, P < 0.01), but was not related with vascular smooth muscle responsiveness to nitric oxide (r = 0.04, P = 0.9). Vascular endothelial cell adiponectin was not related with circulating adiponectin (r = -0.14, P = 0.6). Endothelial cell and circulating adiponectin were differentially associated with adiposity, metabolic and other factors, but both were inversely associated with renal function (r = 0.44 to 0.62, P ≤ 0.04). In conclusion, higher endothelial cell adiponectin levels are associated with higher vascular endothelial function, independent of circulating adiponectin levels in older adults.


Assuntos
Adiponectina/sangue , Envelhecimento/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/fisiologia , Vasodilatação/fisiologia , Adiposidade , Idoso , Artéria Braquial/diagnóstico por imagem , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Fluxo Sanguíneo Regional , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA