Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biomedicines ; 10(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36289637

RESUMO

Basal Cell Carcinoma (BCC) is the most commonly diagnosed cancer worldwide. While the survivability of BCC is high, many patients are excluded from clinically available treatments due to health risks or personal choice. Further, patients with advanced or metastatic disease have severely limited treatment options. The dysregulation of the Hedgehog (Hh) signaling cascade drives onset and progression of BCC. As such, the modulation of this pathway has driven advancements in BCC research. In this review, we focus firstly on inhibitors that target the Hh pathway as chemotherapeutics against BCC. Two therapies targeting Hh signaling have been made clinically available for BCC patients, but these treatments suffer from limited initial efficacy and a high rate of chemoresistant tumor recurrence. Herein, we describe more recent developments of chemical scaffolds that have been designed to hopefully improve upon the available therapeutics. We secondly discuss the history and recent efforts involving modulation of the Hh genome as a method of producing in vivo models of BCC for preclinical research. While there are many advancements left to be made towards improving patient outcomes with BCC, it is clear that targeting the Hh pathway will remain at the forefront of research efforts in designing more effective chemotherapeutics as well as relevant preclinical models.

2.
Bioconjug Chem ; 33(4): 643-653, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35271256

RESUMO

The Hedgehog (Hh) signaling pathway is integral for embryonic development and normal cell maintenance. However, aberrant expression of the Hh pathway is recognized as the oncogenic driving force for basal cell carcinoma (BCC). Current chemotherapeutic treatments that inhibit Hh signaling allow treatment of only locally advanced and metastatic BCCs via inhibition of the transmembrane protein, smoothened. It is further recognized that downstream mutations often lead to chemoresistant tumor recurrence. The Gli proteins are the ultimate regulators of Hh signaling and belong to a family of Cys2His2 zinc finger transcription factors (ZnFTFs) that we have shown can be irreversibly inhibited by a series of cobalt(III) Schiff base-DNA (CoSB-DNA) conjugates. However, a significant challenge is the delivery of CoSB-DNA complexes in mammalian tissues. Herein, we report a polyethyleneimine-functionalized graphene oxide nanoconjugate (GOPEI) that delivers CoGli, a CoSB-DNA complex that targets Gli specifically. We describe the characterization of the surface functionalization of GOPEI and accumulation in ASZ murine BCC cells via confocal microscopy and inductively coupled plasma-mass spectrometry (ICP-MS). Lysosomal escape of CoGli is further confirmed by confocal microscopy. We report the successful targeting of Gli by CoGli and a 17-fold improvement in potency over small-molecule Gli inhibitor GANT-61 in inhibiting Hh-driven migration of ASZ murine BCC cells. This study provides a promising starting point for further investigating CoGli inhibitors of Hh signaling in developed mammalian tissues.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Animais , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , DNA/uso terapêutico , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo , Camundongos , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
3.
ChemMedChem ; 17(8): e202200025, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35302712

RESUMO

The aberrant activation of the Gli family of zinc finger transcription factors (ZFTFs) is associated with several types of human cancer, including medulloblastoma and basal cell carcinoma. We have reported the use of cobalt(III) Schiff-base complexes (Co(III)-sb) as potent inhibitors of ZFTFs in vivo. These complexes inhibit transcription by displacing the zinc finger domain's structural Zn(II) ion, destabilizing the alpha helix necessary for DNA recognition. Here, we describe the use of Co(III)-sb complexes for the selective inhibition of Gli1. Spectroscopic and computational studies of the Gli1 DNA binding domain found that Co(III)-sb displaced Zn(II) through direct coordination with the His residues of the Cys2 His2 Zn(II) binding site. As a result, there is a dose-dependent degradation of the alpha-helix content in the DNA binding domain of Gli1 and corresponding inhibition of consensus sequence recognition. We conclude that this strategy is well suited for the development of new and potent inhibitors of Gli1.


Assuntos
Cobalto , Fatores de Transcrição , Cobalto/química , Cobalto/farmacologia , DNA/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco , Dedos de Zinco
4.
Mol Ther Methods Clin Dev ; 23: 128-134, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703836

RESUMO

Transformative results of adeno-associated virus (AAV) gene therapy in patients with spinal muscular atrophy and Leber's congenital amaurosis led to approval of the first two AAV products in the United States to treat these diseases. These extraordinary results led to a dramatic increase in the number and type of AAV gene-therapy programs. However, the field lacks non-invasive means to assess levels and duration of therapeutic protein function in patients. Here, we describe a new magnetic resonance imaging (MRI) technology for real-time reporting of gene-therapy products in the living animal in the form of an MRI probe that is activated in the presence of therapeutic protein expression. For the first time, we show reliable tracking of enzyme expression after a now in-human clinical trial AAV gene therapy (ClinicalTrials.gov: NTC03952637) encoding lysosomal acid beta-galactosidase (ßgal) using a self-immolative ßgal-responsive MRI probe. MRI enhancement in AAV-treated enzyme-deficient mice (GLB-1-/-) correlates with ßgal activity in central nervous system and peripheral organs after intracranial or intravenous AAV gene therapy, respectively. With >1,800 gene therapies in phase I/II clinical trials (ClinicalTrials.gov), development of a non-invasive method to track gene expression over time in patients is crucial to the future of the gene-therapy field.

5.
J Am Chem Soc ; 143(41): 17097-17108, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612645

RESUMO

Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed in aggressive prostate cancer (PCa) and has been extensively studied as a PCa diagnostic imaging biomarker. Multiple imaging modalities have exploited PSMA as a biomarker including magnetic resonance (MR), Optical, and PET imaging. Of all the imaging MR imaging provides the most detailed information, concurrently providing anatomical, functional, and potentially molecular information. However, the lower sensitivity of MR requires development of molecular MR contrast agents that provides high signal-to-noise ratios. Herein, we report the first targeted and activatable Gd(III)-based MR contrast agents prostate cancer probe 1 and 2 (PCP-1 and -2). We successfully used PCP-2 to differentiate between PSMA+ and PSMA- prostate cancer cells with both in vitro fluorescence imaging and in vivo MR imaging. The in vivo MR imaging results were further supported by ex vivo fluorescence imaging studies, showcasing the unique bimodal feature of PCP-2. Furthermore, PCP-2 highlights a unique molecular MR probe design strategy that improved the sensitivity of traditional biomarker-targeted MR imaging, addressing a critical unmet need in molecular MR imaging field. This work represents the first example of a targeted and activatable MR contrast agent that can be systemically administered in vivo to highlight PSMA+ prostate tumors, paving the way for the clinical translation of MR PSMA imaging.


Assuntos
Meios de Contraste
6.
ChemMedChem ; 16(24): 3663-3671, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34355523

RESUMO

Cisplatin and related Pt(II) chemotherapeutics are indispensable tools for the treatment of various solid tumors. Despite their widespread clinical use in approximately 50 % of chemotherapy regimens, they are hindered by issues with off-target toxicity and chemoresistance, both innate and acquired. To date, there is no effective way to predict the outcome of Pt(II) chemotherapy because the genes associated with resistance are not completely known or understood. Instead, patients undergo weeks to months of potentially harmful therapy before knowing if it is effective. Here we report two Gd(III)-Pt(II) theranostic MR contrast agents that contain cisplatin and carboplatin-based moieties respectively. We used these agents to demonstrate that accumulation differences in Pt(II) sensitive and resistant cells, a dominant factor in chemoresistance, can be imaged by MR. Both theranostic agents bind to DNA, are cytotoxic, and enhance the intracellular T1 -weighted MR contrast of multiple cell lines. Most importantly, the cisplatin-based agent accumulates less in Pt(II) resistant cells in vitro and in vivo, resulting in decreased MR contrast enhancement compared to the parent Pt(II) sensitive cell line. This straightforward method to image a key factor of Pt(II) resistance using MRI is an important first step towards the ultimate goals of predicting response to Pt(II) chemotherapy and monitoring for the onset of chemoresistance - a critical unmet need in medicine that could significantly improve patient outcomes.


Assuntos
Antineoplásicos/farmacologia , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Platina/farmacologia , Nanomedicina Teranóstica , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Gadolínio/química , Humanos , Estrutura Molecular , Platina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Nano Lett ; 20(10): 7159-7167, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845644

RESUMO

Adjuvant radiotherapy is frequently prescribed to treat cancer. To minimize radiation-related damage to healthy tissue, it requires high precision in tumor localization and radiation dose delivery. This can be achieved by MR guidance and targeted amplification of radiation dose selectively to tumors by using radiosensitizers. Here, we demonstrate prostate cancer-targeted gold nanoparticles (AuNPs) for MR-guided radiotherapy to improve the targeting precision and efficacy. By conjugating Gd(III) complexes and prostate-specific membrane antigen (PSMA) targeting ligands to AuNP surfaces, we found enhanced uptake of AuNPs by PSMA-expressing cancer cells with excellent MR contrast and radiation therapy outcome in vitro and in vivo. The AuNPs binding affinity and r1 relaxivity were dramatically improved and the combination of Au and Gd(III)provided better tumor suppression after radiation. The precise tumor localization by MR and selective tumor targeting of the PSMA-1-targeted AuNPs could enable precise radiotherapy, reduction in irradiating dose, and minimization of healthy tissue damage.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Linhagem Celular Tumoral , Ouro , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
8.
RSC Adv ; 10(15): 8994-8999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274014

RESUMO

Differences in tissue pH can be diagnostic of cancer and other conditions that shift cell metabolism. Paramagnetic probes are promising tools for pH mapping in vivo using magnetic resonance spectroscopy (MRS) as they provide uniquely shifted MR signals that change with pH. Here, we demonstrate a 3-hydroxy-6-methylpyridyl coordinating group as a new pH-responsive reporter group for Ln(III) MRS probes. The pH response of the complex was observed by UV-Vis, fluorescence, and NMR spectroscopies, and modeled using DFT. These results provide insight into the observed pH-dependent NMR spectrum of the complex. The protonation state of the hydroxypyridine changes the coordinating ability of the ligand, affecting the dipolar field of the lanthanide and the chemical shift of nearby reporter nuclei. The favorable pH response and coordination properties of the 3-hydroxypyridyl group indicates its potential for further development as a dual responsive-reporter group. Incorporation into optimized scaffolds for MRS detection may enable sensitive pH-mapping in vivo.

9.
ACS Chem Biol ; 15(2): 334-341, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31967770

RESUMO

Ca(II) ions are critical for the proper function of neurons by contributing to synaptic signaling and regulating neuronal plasticity. Dysregulation of Ca(II) is associated with a number of pathologies that cause neurodegeneration; therefore the ability to monitor Ca(II) intracellularly is an important target for molecular imaging. Contrast-enhanced MR imaging is a promising modality for imaging changes in Ca(II) concentrations. However, the majority of Ca(II) responsive MR agents are limited to the extracellular space or hindered by poor cellular uptake. Here, we describe a new class of multimodal, bioresponsive Ca(II) magnetic resonance agents that are coupled to the NIR probe IR-783. This new design is based on previous generations of our Ca(II) MR agents but overcomes two significant challenges: (1) the presence of the NIR probe dramatically increases cellular uptake of the agent and (2) provides histological validation of the MR signal using NIR fluorescence imaging. IR-783 targets organic anion transporter polypeptides, and we demonstrate that the agents are not toxic in HT-22 or U-87 MG cells up to 20 µM. The cellular uptake of complex 1 was measured to be greater than 16 femtomoles per cell (where ∼1 femtomole/cell is detectable in acquired MR images). Complex 1 is simultaneously detectable by both MR and NIR fluorescence imaging in vitro and is activated (turned on) by intracellular Ca(II) at concentrations between 1 and 10 µM.


Assuntos
Cálcio/metabolismo , Meios de Contraste/farmacologia , Complexos de Coordenação/farmacologia , Corantes Fluorescentes/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Indóis/farmacologia , Animais , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Corantes Fluorescentes/síntese química , Gadolínio/química , Compostos Heterocíclicos com 1 Anel/síntese química , Humanos , Indóis/síntese química , Imageamento por Ressonância Magnética , Camundongos , Microscopia de Fluorescência
10.
Chem Sci ; 11(9): 2524-2530, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34084418

RESUMO

Pt(iv) prodrugs have emerged as versatile therapeutics for addressing issues regarding off-target toxicity and the chemoresistance of classic Pt(ii) drugs such as cisplatin and carboplatin. There is significant potential for Pt(iv) complexes to be used as theranostic agents, yet there are currently no reported examples of Gd(iii)-Pt(iv) agents for simultaneous MR imaging and chemotherapy. Here we report the synthesis, characterization, and in vitro efficacy of two Gd(iii)-Pt(iv) agents, GP1 and GP2. Both agents are water soluble and stable under extracellularly relevant conditions but are reduced under intracellular conditions. Both are cytotoxic in multiple cancer cell lines, cell permeable, and significantly enhance the T 1-weighted MR contrast of multiple cell lines. Thus, GP1 and GP2 are promising agents for tandem MR imaging and chemotherapy and provide a versatile platform through which future Gd(iii)-Pt(iv) agents can be developed.

11.
Bioconjug Chem ; 30(11): 2947-2957, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31589412

RESUMO

ProGlo is an efficient steroid receptor-targeted magnetic resonance (MR) imaging contrast agent (CA). It has been shown to bind to the progesterone receptor (PR) and produce enhanced image contrast in PR-positive cells and tissues in vitro and in vivo. However, the hydrophobicity of the steroid targeting domain of ProGlo (logP = 1.4) limits its formulation and delivery at clinically relevant doses. In this work, a hydrophobic moiety was utilized to drive efficient adsorption onto nanodiamond (ND) clusters to form a water-soluble nanoconstruct (logP = -2.4) with 80% release in 8 h under biological conditions. In cell culture, the ND-ProGlo construct delivered increased concentrations of ProGlo to target cells compared to ProGlo alone. Importantly, these results were accomplished without the use of solvents such as DMSO, providing a significant advance toward formulating ProGlo for translational applications. Biodistribution studies confirm the delivery of ProGlo to PR(+) tissues with enhanced efficacy over untargeted controls. These results demonstrate the potential for a noncovalent ND-CA construct as a general strategy for solubilizing and delivering hydrophobic targeted MR CAs.


Assuntos
Neoplasias da Mama/patologia , Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Nanoconjugados/química , Nanodiamantes/administração & dosagem , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/metabolismo , Meios de Contraste/química , Feminino , Humanos , Camundongos , Nanodiamantes/química , Receptores de Progesterona/química , Solubilidade , Distribuição Tecidual , Células Tumorais Cultivadas
12.
Met Ions Life Sci ; 192019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30855112

RESUMO

The use of metals in medicine has grown impressively in recent years as a result of greatly advanced understanding of biologically active metal complexes and metal-containing proteins. One landmark in this area was the introduction of cisplatin and related derivatives as anticancer drugs. As the body of literature continues to expand, it is necessary to inspect sub-classes of this group with more acute detail. This chapter will review preclinical research of cobalt complexes coordinated by Schiff base ligands. Cobalt-Schiff base complexes have a wide variety of potential therapeutic functions, including as antimicrobials, anticancer agents, and inhibitors of protein aggregation. While providing a broad introduction to this class of agents, this chapter will pay particular attention to agents for which mechanisms of actions have been studied. Appropriate methods to assess activity of these complexes will be reviewed, and promising preclinical complexes in each of the following therapeutic areas will be highlighted: antimicrobial, antiviral, cancer therapy, and Alzheimer's disease.


Assuntos
Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Bases de Schiff/farmacologia , Ligantes
13.
J Am Chem Soc ; 141(15): 6224-6233, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30919628

RESUMO

Effective cancer therapy largely depends on inducing apoptosis in cancer cells via chemotherapy and/or radiation. Monitoring apoptosis in real-time provides invaluable information for evaluating cancer therapy response and screening preclinical anticancer drugs. In this work, we describe the design, synthesis, characterization, and in vitro evaluation of caspase probe 1 (CP1), a bimodal fluorescence-magnetic resonance (FL-MR) probe that exhibits simultaneous FL-MR turn-on response to caspase-3/7. Both caspases exist as inactive zymogens in normal cells but are activated during apoptosis and are unique biomarkers for this process. CP1 has three distinct components: a DOTA-Gd(III) chelate that provides the MR signal enhancement, tetraphenylethylene as the aggregation induced emission luminogen (AIEgen), and DEVD peptide which is a substrate for caspase-3/7. In response to caspase-3/7, the water-soluble peptide DEVD is cleaved and the remaining Gd(III)-AIEgen (Gad-AIE) conjugate aggregates leading to increased FL-MR signals. CP1 exhibited sensitive and selective dual FL-MR turn-on response to caspase-3/7 in vitro and was successfully tested by fluorescence imaging of apoptotic cells. Remarkably, we were able to use the FL response of CP1 to quantify the exact concentrations of inactive and active agents and accurately predict the MR signal in vitro. We have demonstrated that the aggregation-driven FL-MR probe design is a unique method for MR signal quantification. This probe design platform can be adapted for a variety of different imaging targets, opening new and exciting avenues for multimodal molecular imaging.


Assuntos
Apoptose , Caspases/química , Meios de Contraste/química , Fluorescência , Corantes Fluorescentes/química , Imageamento por Ressonância Magnética , Imagem Óptica , Caspases/metabolismo , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Micelas , Estrutura Molecular
14.
ACS Appl Mater Interfaces ; 9(46): 39890-39894, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915004

RESUMO

Misregulation of extracellular Ca2+ can indicate bone-related pathologies. New, noninvasive tools are required to image Ca2+ fluxes and fluorine magnetic resonance imaging (19F-MRI) is uniquely suited to this challenge. Here, we present three, highly fluorinated peptide amphiphiles that self-assemble into nanoribbons in buffered saline and demonstrate these nanostructures can be programmed to change 19F-NMR signal intensity as a function of Ca2+ concentration. We determined these nanostructures show significant reduction in 19F-NMR signal as nanoribbon width increases in response to Ca2+, corresponding to 19F-MR image intensity reduction. Thus, these peptide amphiphiles can be used to quantitatively image biologically relevant Ca2+ concentrations.


Assuntos
Cálcio/química , Flúor , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Peptídeos
15.
Proc Natl Acad Sci U S A ; 114(38): E7919-E7928, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874575

RESUMO

Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice.


Assuntos
Materiais Biomiméticos/química , Sobrevivência de Enxerto , Cristais Líquidos/química , Músculo Esquelético/metabolismo , Mioblastos/transplante , Nanofibras/química , Transplante de Células-Tronco/métodos , Alicerces Teciduais/química , Animais , Camundongos , Músculo Esquelético/patologia , Mioblastos/metabolismo , Mioblastos/patologia
16.
Bioconjug Chem ; 28(1): 153-160, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27537821

RESUMO

In vivo cell tracking is vital for understanding migrating cell populations, particularly cancer and immune cells. Magnetic resonance (MR) imaging for long-term tracking of transplanted cells in live organisms requires cells to effectively internalize Gd(III) contrast agents (CAs). Clinical Gd(III)-based CAs require high dosing concentrations and extended incubation times for cellular internalization. To combat this, we have devised a series of Gd(III)-gold nanoconjugates (Gd@AuNPs) with varied chelate structure and nanoparticle-chelate linker length, with the goal of labeling and imaging breast cancer cells. These new Gd@AuNPs demonstrate significantly enhanced labeling compared to previous Gd(III)-gold-DNA nanoconstructs. Variations in Gd(III) loading, surface packing, and cell uptake were observed among four different Gd@AuNP formulations suggesting that linker length and surface charge play an important role in cell labeling. The best performing Gd@AuNPs afforded 23.6 ± 3.6 fmol of Gd(III) per cell at an incubation concentration of 27.5 µM-this efficiency of Gd(III) payload delivery (Gd(III)/cell normalized to dose) exceeds that of previous Gd(III)-Au conjugates and most other Gd(III)-nanoparticle formulations. Further, Gd@AuNPs were well-tolerated in vivo in terms of biodistribution and clearance, and supports future cell tracking applications in whole-animal models.


Assuntos
Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanoconjugados/química , Animais , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Camundongos
17.
Nano Lett ; 16(12): 7551-7564, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960515

RESUMO

The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond-gadolinium(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium(III) [Gd(III)]-nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd(III) compared to that of clinical Gd(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1- and T2-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities.


Assuntos
Gadolínio , Imagem Molecular , Nanodiamantes , Neoplasias Experimentais/diagnóstico por imagem , Animais , Meios de Contraste , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID
18.
ACS Nano ; 10(8): 7376-84, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27425636

RESUMO

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent spatial and temporal resolution. The most commonly used MR probes face significant challenges originating from the endogenous (1)H background signal of water. In contrast, fluorine MRI ((19)F MRI) allows quantitative probe imaging with zero background signal. Probes with high fluorine content are required for high sensitivity, suggesting nanoscale supramolecular assemblies containing (19)F probes offer a potentially useful strategy for optimum imaging as a result of improved payload. We report here on supramolecular nanostructures formed by fluorinated peptide amphiphiles containing either glutamic acid or lysine residues in their sequence. We identified molecules that form aggregates in water which transition from cylindrical to ribbon-like shape as pH increased from 4.5 to 8.0. Interestingly, we found that ribbon-like nanostructures had reduced magnetic resonance signal, whereas their cylindrical counterparts exhibited strong signals. We attribute this drastic difference to the greater mobility of fluorinated tails in the hydrophobic compartment of cylindrical nanostructures compared to lower mobility in ribbon-like assemblies. This discovery identifies a strategy to design supramolecular, self-assembling contrast agents for (19)F MRI that can spatially map physiologically relevant changes in pH using changes in morphology.


Assuntos
Imageamento por Ressonância Magnética , Nanoestruturas , Peptídeos , Fluoretos , Interações Hidrofóbicas e Hidrofílicas
19.
Nano Lett ; 16(5): 3202-9, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27050622

RESUMO

Pancreatic adenocarcinoma has a 5 year survival of approximately 3% and median survival of 6 months and is among the most dismal of prognoses in all of medicine. This poor prognosis is largely due to delayed diagnosis where patients remain asymptomatic until advanced disease is present. Therefore, techniques to allow early detection of pancreatic adenocarcinoma are desperately needed. Imaging of pancreatic tissue is notoriously difficult, and the development of new imaging techniques would impact our understanding of organ physiology and pathology with applications in disease diagnosis, staging, and longitudinal response to therapy in vivo. Magnetic resonance imaging (MRI) provides numerous advantages for these types of investigations; however, it is unable to delineate the pancreas due to low inherent contrast within this tissue type. To overcome this limitation, we have prepared a new Gd(III) contrast agent that accumulates in the pancreas and provides significant contrast enhancement by MR imaging. We describe the synthesis and characterization of a new dithiolane-Gd(III) complex and a straightforward and scalable approach for conjugation to a gold nanoparticle. We present data that show the nanoconjugates exhibit very high per particle values of r1 relaxivity at both low and high magnetic field strengths due to the high Gd(III) payload. We provide evidence of pancreatic tissue labeling that includes MR images, post-mortem biodistribution analysis, and pancreatic tissue evaluation of particle localization. Significant contrast enhancement was observed allowing clear identification of the pancreas with contrast-to-noise ratios exceeding 35:1.


Assuntos
Meios de Contraste/química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/diagnóstico por imagem , Compostos de Sulfidrila/química , Animais , Gadolínio/farmacocinética , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Nanoconjugados/química , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual , Neoplasias Pancreáticas
20.
Biomaterials ; 77: 291-306, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26615367

RESUMO

The unambiguous imaging of transplanted cells remains a major challenge to understand their biological function and therapeutic efficacy. In vivo imaging of implanted cells is reliant on tagging these to differentiate them from host tissue, such as the brain. We here characterize a gold nanoparticle conjugate that is functionalized with modified deoxythymidine oligonucleotides bearing Gd(III) chelates and a red fluorescent Cy3 moiety to visualize in vivo transplanted human neural stem cells. This DNA-Gd@Au nanoparticle (DNA-Gd@AuNP) exhibits an improved T1 relaxivity and excellent cell uptake. No significant effects of cell uptake have been found on essential cell functions. Although T1 relaxivity is attenuated within cells, it is sufficiently preserved to afford the in vivo detection of transplanted cells using an optimized voxel size. In vivo MR images were corroborated by a post-mortem histological verification of DNA-Gd@AuNPs in transplanted cells. With 70% of cells being correctly identified using the DNA-Gd-AuNPs indicates an overall reliable detection. Less than 1% of cells were false positive for DNA-Gd@AuNPs, but a significant number of 30% false negatives reveals a dramatic underestimation of transplanted cells using this approach. DNA-Gd@AuNPs therefore offer new opportunities to visualize transplanted cells unequivocally using T1 contrast and use cellular MRI as a tool to derive biologically relevant information that allows us to understand how the survival and location of implanted cells determines therapeutic efficacy.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/análise , DNA/análise , Gadolínio/análise , Coloide de Ouro/análise , Imageamento por Ressonância Magnética/métodos , Nanoconjugados/análise , Nanopartículas/análise , Células-Tronco Neurais/transplante , Animais , Astrócitos/citologia , Linhagem Celular , Córtex Cerebral/ultraestrutura , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Corpo Estriado/citologia , DNA/administração & dosagem , DNA/farmacocinética , Gadolínio/administração & dosagem , Gadolínio/farmacocinética , Coloide de Ouro/administração & dosagem , Coloide de Ouro/farmacocinética , Sobrevivência de Enxerto , Humanos , Neurogênese , Neurônios/citologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/análise , Oligonucleotídeos/síntese química , Oligonucleotídeos/farmacocinética , Imagens de Fantasmas , Razão Sinal-Ruído , Timidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA