Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): 1136-1155, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38038252

RESUMO

Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.


Assuntos
Centrômero , Quebras de DNA de Cadeia Dupla , Chaperonas Moleculares , Proteínas Nucleares , Estruturas R-Loop , Proteína Nuclear Ligada ao X , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Cromatina , Proteínas Correpressoras/metabolismo , DNA , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562959

RESUMO

The ß-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimer's disease (AD), owing to its role in the production of neurotoxic amyloid beta (Aß) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering Aß concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Furthermore, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD.


Assuntos
Doença de Alzheimer , Receptor DCC , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Biologia Computacional , Receptor DCC/genética , Receptor DCC/metabolismo , Mineração de Dados , Humanos , Monoéster Fosfórico Hidrolases , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
3.
Redox Biol ; 47: 102158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626892

RESUMO

The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy.


Assuntos
Astrócitos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes , Astrócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
4.
Nat Commun ; 9(1): 1306, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29610518

RESUMO

Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Feminino , Glucose/química , Glicosilação , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais
5.
Nature ; 556(7699): 113-117, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590092

RESUMO

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/química
6.
PLoS One ; 10(9): e0138872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405763

RESUMO

Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.


Assuntos
Antígenos CD18/genética , Antígenos CD18/metabolismo , Resistência à Insulina , Infiltração de Neutrófilos , Obesidade/imunologia , Tecido Adiposo Branco/imunologia , Animais , Sítios de Ligação , Antígenos CD18/química , Dieta Hiperlipídica , Fígado/imunologia , Macrófagos/metabolismo , Camundongos , Mutação , Obesidade/genética , Obesidade/metabolismo , Linfócitos T/metabolismo
7.
J Autoimmun ; 60: 59-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25975491

RESUMO

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1ß was the most down-regulated gene. Consistent with this, IL-1ß was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1ß by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Proteínas de Helminto/farmacologia , Interleucina-1beta/biossíntese , Fator 2 Relacionado a NF-E2/genética , Acanthocheilonema/metabolismo , Animais , Artrite Experimental/prevenção & controle , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Colágeno , Gerbillinae , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Articulações/imunologia , Articulações/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/imunologia
8.
Antioxid Redox Signal ; 20(18): 2907-22, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24219064

RESUMO

AIMS: Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc(-) imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc(-) and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. RESULTS: PI3Ks induce system xc(-) through glycogen synthase kinase 3ß (GSK-3ß) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. INNOVATION: Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3ß, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc(-). Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. CONCLUSION: PI3K-regulated system xc(-) activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Epilepsia/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Regulação para Cima/fisiologia , Linhagem Celular , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Humanos , Células-Tronco Neoplásicas , Fármacos Neuroprotetores , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
9.
Free Radic Biol Med ; 48(2): 357-71, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19914374

RESUMO

Nonalcoholic steatohepatitis (NASH) arises from nonalcoholic fatty liver disease (NAFLD) as a consequence of oxidative stress. Herein we report that the development of NASH is greatly accelerated in mice lacking transcription factor Nrf2 when they are challenged with a methionine- and choline-deficient (MCD) diet. After 14 days of feeding on an MCD diet, livers from Nrf2(-/-) mice showed a substantial increase in macro- and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2(-/-) mice on the MCD diet suffered more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in oxidized glutathione and malondialdehyde. Furthermore, livers from Nrf2(-/-) mice on the MCD diet suffered heightened inflammation as judged by an approximately 10-fold increase in the amount of nuclear NF-kappaB p65 protein and approximately 5-fold increases in the levels of mRNA for interleukin-1beta, tumor necrosis factor alpha, cyclooxygenase 2, and inducible nitric oxide synthase compared with livers from similarly treated wild-type mice. Thus, impairment of Nrf2 activity may represent a major risk factor for the evolution of NAFLD to NASH.


Assuntos
Fígado Gorduroso/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Colina/química , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Progressão da Doença , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Alimentos Formulados , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Fígado/patologia , Masculino , Metionina/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Infiltração de Neutrófilos/genética , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA