Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 152, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152482

RESUMO

BACKGROUND: H2S imbalances in the intestinal tract trigger Crohn's disease (CD), a chronic inflammatory gastrointestinal disorder characterized by microbiota dysbiosis and barrier dysfunction. However, a comprehensive understanding of H2S generation in the gut, and the contributions of both microbiota and host to systemic H2S levels in CD, remain to be elucidated. This investigation aimed to enhance comprehension regarding the sulfidogenic potential of both the human host and the gut microbiota. RESULTS: Our analysis of a treatment-naive CD cohorts' fecal metagenomic and biopsy metatranscriptomic data revealed reduced expression of host endogenous H2S generation genes alongside increased abundance of microbial exogenous H2S production genes in correlation with CD. While prior studies focused on microbial H2S production via dissimilatory sulfite reductases, our metagenomic analysis suggests the assimilatory sulfate reduction (ASR) pathway is a more significant contributor in the human gut, given its high prevalence and abundance. Subsequently, we validated our hypothesis experimentally by generating ASR-deficient E. coli mutants ∆cysJ and ∆cysM through the deletion of sulfite reductase and L-cysteine synthase genes. This alteration significantly affected bacterial sulfidogenic capacity, colon epithelial cell viability, and colonic mucin sulfation, ultimately leading to colitis in murine model. Further study revealed that gut microbiota degrade sulfopolysaccharides and assimilate sulfate to produce H2S via the ASR pathway, highlighting the role of sulfopolysaccharides in colitis and cautioning against their use as food additives. CONCLUSIONS: Our study significantly advances understanding of microbial sulfur metabolism in the human gut, elucidating the complex interplay between diet, gut microbiota, and host sulfur metabolism. We highlight the microbial ASR pathway as an overlooked endogenous H2S producer and a potential therapeutic target for managing CD. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Sulfatos , Doença de Crohn/microbiologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Animais , Camundongos , Sulfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fezes/microbiologia , Disbiose/microbiologia , Colo/microbiologia , Metagenômica , Oxirredução , Modelos Animais de Doenças , Feminino
2.
Sci Adv ; 10(35): eadq3942, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39196928

RESUMO

Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.


Assuntos
Lactonas , Oryza , Proteínas de Plantas , Raízes de Plantas , Oryza/genética , Oryza/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Mutação , Fenótipo , Micorrizas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38569653

RESUMO

Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. ONE-SENTENCE SUMMARY: This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.


Assuntos
Actinobacteria , Produtos Biológicos , Descoberta de Drogas , Redes Reguladoras de Genes , Actinobacteria/metabolismo , Actinobacteria/genética , Produtos Biológicos/metabolismo , Vias Biossintéticas , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
ACS Chem Biol ; 19(5): 1106-1115, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38602492

RESUMO

The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Especificidade de Hospedeiro , Descoberta de Drogas , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Peptídeos
5.
Trends Pharmacol Sci ; 44(8): 532-541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391295

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a chemically diverse class of metabolites. Many RiPPs show potent biological activities that make them attractive starting points for drug development. A promising approach for the discovery of new classes of RiPPs is genome mining. However, the accuracy of genome mining is hampered by the lack of signature genes shared across different RiPP classes. One way to reduce false-positive predictions is by complementing genomic information with metabolomics data. In recent years, several new approaches addressing such integrative genomics and metabolomics analyses have been developed. In this review, we provide a detailed discussion of RiPP-compatible software tools that integrate paired genomics and metabolomics data. We highlight current challenges in data integration and identify opportunities for further developments targeting new classes of bioactive RiPPs.


Assuntos
Produtos Biológicos , Humanos , Ribossomos/genética , Ribossomos/metabolismo , Peptídeos , Genômica , Metaboloma , Processamento de Proteína Pós-Traducional
6.
Nucleic Acids Res ; 51(W1): W46-W50, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140036

RESUMO

Microorganisms produce small bioactive compounds as part of their secondary or specialised metabolism. Often, such metabolites have antimicrobial, anticancer, antifungal, antiviral or other bio-activities and thus play an important role for applications in medicine and agriculture. In the past decade, genome mining has become a widely-used method to explore, access, and analyse the available biodiversity of these compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free to use web server and as a standalone tool under an OSI-approved open source licence. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in archaea, bacteria, and fungi. Here, we present the updated version 7 of antiSMASH. antiSMASH 7 increases the number of supported cluster types from 71 to 81, as well as containing improvements in the areas of chemical structure prediction, enzymatic assembly-line visualisation and gene cluster regulation.


Assuntos
Computadores , Software , Bactérias/genética , Bactérias/metabolismo , Archaea/genética , Genoma Microbiano , Família Multigênica , Metabolismo Secundário/genética
7.
New Phytol ; 235(5): 1884-1899, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612785

RESUMO

Strigolactones (SLs) are rhizosphere signalling molecules and phytohormones. The biosynthetic pathway of SLs in tomato has been partially elucidated, but the structural diversity in tomato SLs predicts that additional biosynthetic steps are required. Here, root RNA-seq data and co-expression analysis were used for SL biosynthetic gene discovery. This strategy resulted in a candidate gene list containing several cytochrome P450s. Heterologous expression in Nicotiana benthamiana and yeast showed that one of these, CYP712G1, can catalyse the double oxidation of orobanchol, resulting in the formation of three didehydro-orobanchol (DDH) isomers. Virus-induced gene silencing and heterologous expression in yeast showed that one of these DDH isomers is converted to solanacol, one of the most abundant SLs in tomato root exudate. Protein modelling and substrate docking analysis suggest that hydroxy-orbanchol is the likely intermediate in the conversion from orobanchol to the DDH isomers. Phylogenetic analysis demonstrated the occurrence of CYP712G1 homologues in the Eudicots only, which fits with the reports on DDH isomers in that clade. Protein modelling and orobanchol docking of the putative tobacco CYP712G1 homologue suggest that it can convert orobanchol to similar DDH isomers as tomato.


Assuntos
Solanum lycopersicum , Catálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Rizosfera , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Nat Microbiol ; 7(5): 726-735, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505244

RESUMO

Bacterial specialized metabolites are a proven source of antibiotics and cancer therapies, but whether we have sampled all the secondary metabolite chemical diversity of cultivated bacteria is not known. We analysed ~170,000 bacterial genomes and ~47,000 metagenome assembled genomes (MAGs) using a modified BiG-SLiCE and the new clust-o-matic algorithm. We estimate that only 3% of the natural products potentially encoded in bacterial genomes have been experimentally characterized. We show that the variation in secondary metabolite biosynthetic diversity drops significantly at the genus level, identifying it as an appropriate taxonomic rank for comparison. Equal comparison of genera based on relative evolutionary distance revealed that Streptomyces bacteria encode the largest biosynthetic diversity by far, with Amycolatopsis, Kutzneria and Micromonospora also encoding substantial diversity. Finally, we find that several less-well-studied taxa, such as Weeksellaceae (Bacteroidota), Myxococcaceae (Myxococcota), Pleurocapsa and Nostocaceae (Cyanobacteria), have potential to produce highly diverse sets of secondary metabolites that warrant further investigation.


Assuntos
Cianobactérias , Streptomyces , Genoma Bacteriano/genética , Filogenia , Metabolismo Secundário/genética
9.
Nat Chem Biol ; 18(1): 18-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811516

RESUMO

Many bioactive plant cyclic peptides form side-chain-derived macrocycles. Lyciumins, cyclic plant peptides with tryptophan macrocyclizations, are ribosomal peptides (RiPPs) originating from repetitive core peptide motifs in precursor peptides with plant-specific BURP (BNM2, USP, RD22 and PG1beta) domains, but the biosynthetic mechanism for their formation has remained unknown. Here, we characterize precursor-peptide BURP domains as copper-dependent autocatalytic peptide cyclases and use a combination of tandem mass spectrometry-based metabolomics and plant genomics to systematically discover five BURP-domain-derived plant RiPP classes, with mono- and bicyclic structures formed via tryptophans and tyrosines, from botanical collections. As BURP-domain cyclases are scaffold-generating enzymes in plant specialized metabolism that are physically connected to their substrates in the same polypeptide, we introduce a bioinformatic method to mine plant genomes for precursor-peptide-encoding genes by detection of repetitive substrate domains and known core peptide features. Our study sets the stage for chemical, biosynthetic and biological exploration of plant RiPP natural products from BURP-domain cyclases.


Assuntos
Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Catálise , Permeabilidade da Membrana Celular , Ciclização , Genoma de Planta , Espectrometria de Massas em Tandem
10.
Curr Opin Biotechnol ; 69: 60-67, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33383297

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) form a highly diverse class of natural products, with various biotechnologically and clinically relevant activities. A recent increase in discoveries of novel RiPP classes suggests that currently known RiPPs constitute just the tip of the iceberg. Genome mining has been a driving force behind these discoveries, but remains challenging due to a lack of universal genetic markers for RiPP detection. In this review, we discuss how various genome mining methodologies contribute towards the discovery of novel RiPP classes. Some methods prioritize novel biosynthetic gene clusters (BGCs) based on shared modifications between RiPP classes. Other methods identify RiPP precursors using machine-learning classifiers. The integration of such methods as well as integration with other types of omics data in more comprehensive pipelines could help these tools reach their potential, and keep pushing the boundaries of the chemical diversity of this important class of molecules.


Assuntos
Produtos Biológicos , Produtos Biológicos/metabolismo , Biologia Computacional , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo
11.
Nucleic Acids Res ; 49(D1): D639-D643, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152079

RESUMO

Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.


Assuntos
Mineração de Dados , Bases de Dados como Assunto , Enzimas/classificação , Vias Biossintéticas/genética , Família Multigênica , Ferramenta de Busca
12.
PLoS Biol ; 18(12): e3001026, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351797

RESUMO

Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria.


Assuntos
Bacteriocinas/genética , Genômica/métodos , Processamento de Proteína Pós-Traducional/genética , Algoritmos , Bacteriocinas/metabolismo , Produtos Biológicos/análise , Produtos Biológicos/metabolismo , Biologia Computacional/métodos , Genoma/genética , Aprendizado de Máquina , Família Multigênica/genética , Peptídeos/genética , Processamento de Proteína Pós-Traducional/fisiologia , Ribossomos/metabolismo
13.
J Biol Chem ; 295(44): 14826-14839, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32826316

RESUMO

Enzymes that cleave ATP to activate carboxylic acids play essential roles in primary and secondary metabolism in all domains of life. Class I adenylate-forming enzymes share a conserved structural fold but act on a wide range of substrates to catalyze reactions involved in bioluminescence, nonribosomal peptide biosynthesis, fatty acid activation, and ß-lactone formation. Despite their metabolic importance, the substrates and functions of the vast majority of adenylate-forming enzymes are unknown without tools available to accurately predict them. Given the crucial roles of adenylate-forming enzymes in biosynthesis, this also severely limits our ability to predict natural product structures from biosynthetic gene clusters. Here we used machine learning to predict adenylate-forming enzyme function and substrate specificity from protein sequences. We built a web-based predictive tool and used it to comprehensively map the biochemical diversity of adenylate-forming enzymes across >50,000 candidate biosynthetic gene clusters in bacterial, fungal, and plant genomes. Ancestral phylogenetic reconstruction and sequence similarity networking of enzymes from these clusters suggested divergent evolution of the adenylate-forming superfamily from a core enzyme scaffold most related to contemporary CoA ligases toward more specialized functions including ß-lactone synthetases. Our classifier predicted ß-lactone synthetases in uncharacterized biosynthetic gene clusters conserved in >90 different strains of Nocardia. To test our prediction, we purified a candidate ß-lactone synthetase from Nocardia brasiliensis and reconstituted the biosynthetic pathway in vitro to link the gene cluster to the ß-lactone natural product, nocardiolactone. We anticipate that our machine learning approach will aid in functional classification of enzymes and advance natural product discovery.


Assuntos
Monofosfato de Adenosina/biossíntese , Lactonas/metabolismo , Ligases/metabolismo , Nocardia/metabolismo , Catálise , Ligases/genética , Aprendizado de Máquina , Família Multigênica , Nocardia/enzimologia , Filogenia , Reprodutibilidade dos Testes , Especificidade por Substrato
14.
Bioinformatics ; 36(19): 4846-4853, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592463

RESUMO

MOTIVATION: Polyketide synthases (PKSs) are enzymes that generate diverse molecules of great pharmaceutical importance, including a range of clinically used antimicrobials and antitumor agents. Many polyketides are synthesized by cis-AT modular PKSs, which are organized in assembly lines, in which multiple enzymes line up in a specific order. This order is defined by specific protein-protein interactions (PPIs). The unique modular structure and catalyzing mechanism of these assembly lines makes their products predictable and also spurred combinatorial biosynthesis studies to produce novel polyketides using synthetic biology. However, predicting the interactions of PKSs, and thereby inferring the order of their assembly line, is still challenging, especially for cases in which this order is not reflected by the ordering of the PKS-encoding genes in the genome. RESULTS: Here, we introduce PKSpop, which uses a coevolution-based PPI algorithm to infer protein order in PKS assembly lines. Our method accurately predicts protein orders (93% accuracy). Additionally, we identify new residue pairs that are key in determining interaction specificity, and show that coevolution of N- and C-terminal docking domains of PKSs is significantly more predictive for PPIs than coevolution between ketosynthase and acyl carrier protein domains. AVAILABILITY AND IMPLEMENTATION: The code is available on http://www.bif.wur.nl/ (under 'Software'). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Policetídeos , Policetídeo Sintases/genética , Software
15.
Nat Prod Rep ; 36(9): 1249-1261, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259995

RESUMO

Covering: 2014 to 2019Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) have been the subject of engineering efforts for multiple decades. Their modular assembly line architecture potentially allows unlocking vast chemical space for biosynthesis. However, attempts thus far are often met with mixed success, due to limited molecular compatibility of the parts used for engineering. Now, new engineering strategies, increases in genomic data, and improved computational tools provide more opportunities for major progress. In this review we highlight some of the challenges and progressive strategies for the re-design of NRPSs & type I PKSs and survey useful computational tools and approaches to attain the ultimate goal of semi-automated and design-based engineering of novel peptide and polyketide products.


Assuntos
Desenho Assistido por Computador , Engenharia Metabólica/métodos , Biossíntese Peptídica , Policetídeos/síntese química , Peptídeos/metabolismo , Policetídeos/metabolismo
16.
Nucleic Acids Res ; 47(D1): D625-D630, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395294

RESUMO

Natural products originating from microorganisms are frequently used in antimicrobial and anticancer drugs, pesticides, herbicides or fungicides. In the last years, the increasing availability of microbial genome data has made it possible to access the wealth of biosynthetic clusters responsible for the production of these compounds by genome mining. antiSMASH is one of the most popular tools in this field. The antiSMASH database provides pre-computed antiSMASH results for many publicly available microbial genomes and allows for advanced cross-genome searches. The current version 2 of the antiSMASH database contains annotations for 6200 full bacterial genomes and 18,576 bacterial draft genomes and is available at https://antismash-db.secondarymetabolites.org/.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Anotação de Sequência Molecular , Metabolismo Secundário/genética , Família Multigênica , Software
17.
ISME J ; 12(9): 2307-2321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899517

RESUMO

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


Assuntos
Burkholderiaceae/metabolismo , Doenças das Plantas/microbiologia , Microbiologia do Solo , Enxofre/metabolismo , Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , Liases de Carbono-Enxofre/genética , Ecossistema , Fungos/fisiologia , Proteínas Ferro-Enxofre/genética , Consórcios Microbianos , Oxirredutases/genética , Filogenia , Solo
18.
J Am Chem Soc ; 140(12): 4302-4316, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29480720

RESUMO

Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.


Assuntos
Escherichia coli/genética , Engenharia Genética , Saccharomyces cerevisiae/genética , Streptomyces/genética , Aminoglicosídeos/biossíntese , Aminoglicosídeos/química , Carbazóis/química , Carbazóis/metabolismo , Biologia Computacional , Monoterpenos Cicloexânicos , Enedi-Inos/química , Escherichia coli/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Furanos/química , Furanos/metabolismo , Lactonas/química , Lactonas/metabolismo , Estrutura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Peptídeos/química , Pressão , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/química , Pirrolnitrina/biossíntese , Pirrolnitrina/química , Saccharomyces cerevisiae/metabolismo , Streptomyces/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Fatores de Tempo , Vincristina/biossíntese , Vincristina/química
19.
Proc Natl Acad Sci U S A ; 114(29): E6005-E6014, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673978

RESUMO

Sesterterpenoids are a rare terpene class harboring untapped chemodiversity and bioactivities. Their structural diversity originates primarily from the scaffold-generating sesterterpene synthases (STSs). In fungi, all six known STSs are bifunctional, containing C-terminal trans-prenyltransferase (PT) and N-terminal terpene synthase (TPS) domains. In plants, two colocalized PT and TPS gene pairs from Arabidopsis thaliana were recently reported to synthesize sesterterpenes. However, the landscape of PT and TPS genes in plant genomes is unclear. Here, using a customized algorithm for systematically searching plant genomes, we reveal a suite of physically colocalized pairs of PT and TPS genes for the biosynthesis of a large sesterterpene repertoire in the wider Brassicaceae. Transient expression of seven TPSs from A. thaliana, Capsella rubella, and Brassica oleracea in Nicotiana benthamiana yielded fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds, and notably (-)-ent-quiannulatene, an enantiomer of the fungal metabolite (+)-quiannulatene. Protein and structural modeling analysis identified an amino acid site implicated in structural diversification. Mutation of this site in one STS (AtTPS19) resulted in premature termination of carbocation intermediates and accumulation of bi-, tri-, and tetracyclic sesterterpenes, revealing the cyclization path for the pentacyclic sesterterpene (-)-retigeranin B. These structural and mechanistic insights, together with phylogenetic analysis, suggest convergent evolution of plant and fungal STSs, and also indicate that the colocalized PT-TPS gene pairs in the Brassicaceae may have originated from a common ancestral gene pair present before speciation. Our findings further provide opportunities for rapid discovery and production of sesterterpenes through metabolic and protein engineering.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Genoma de Planta , Proteínas de Plantas/genética , Sesterterpenos/biossíntese , Algoritmos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Evolução Molecular , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sesterterpenos/genética , Nicotiana/genética , Nicotiana/metabolismo
20.
Bioinformatics ; 33(20): 3202-3210, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633438

RESUMO

SUMMARY: Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. AVAILABILITY AND IMPLEMENTATION: SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). CONTACT: chevrette@wisc.edu or marnix.medema@wur.nl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Actinobacteria/metabolismo , Algoritmos , Biologia Computacional/métodos , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Análise de Sequência de Proteína/métodos , Actinobacteria/enzimologia , Actinobacteria/genética , Domínio Catalítico , Família Multigênica , Software , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA