Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(20): 13672-13676, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32865986

RESUMO

We introduce STAMPS, a pathway-centric web service for the development of targeted proteomics assays. STAMPS guides the user by providing several intuitive interfaces for a rapid and simplified method design. Applying our curated framework to signaling and metabolic pathways, we reduced the average assay development time by a factor of ∼150 and revealed that the insulin signaling is actively controlled by protein abundance changes in insulin-sensitive and -resistance states. Although at the current state STAMPS primarily contains mouse data, it was designed for easy extension with additional organisms.


Assuntos
Redes e Vias Metabólicas , Proteômica/métodos , Transdução de Sinais , Animais , Cromatografia Líquida de Alta Pressão , Bases de Dados de Proteínas , Insulina/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Peptídeos/análise , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
2.
Nat Commun ; 11(1): 2936, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522993

RESUMO

Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.


Assuntos
Antimetabólitos/farmacologia , Ácido Fólico/farmacologia , Regulon/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Metotrexato/farmacologia , Pemetrexede/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/genética , Regulon/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
3.
RNA Biol ; 17(6): 843-856, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32116123

RESUMO

Recent work has associated point mutations in both zinc fingers (ZnF) of the spliceosome component U2AF35 with malignant transformation. However, surprisingly little is known about the functionality of the U2AF35 ZnF domains in general. Here we have analysed key functionalities of the ZnF domains of mammalian U2AF35 and its paralog U2AF26. Both ZnFs are required for splicing regulation, whereas only ZnF2 controls protein stability and contributes to the interaction with U2AF65. These features are confirmed in a naturally occurring splice variant of U2AF26 lacking ZnF2, that is strongly induced upon activation of primary mouse T cells and localized in the cytoplasm. Using Ribo-Seq in a model T cell line we provide evidence for a role of U2AF26 in activating cytoplasmic steps in gene expression, notably translation. Consistently, an MS2 tethering assay shows that cytoplasmic U2AF26/35 increase translation when localized to the 5'UTR of a model mRNA. This regulation is partially dependent on ZnF1 thus providing a connection between a core splicing factor, the ZnF domains and the regulation of translation. Altogether, our work reveals unexpected functions of U2AF26/35 and their ZnF domains, thereby contributing to a better understanding of their role and regulation in mammalian cells.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Fator de Processamento U2AF/metabolismo , Dedos de Zinco , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Splicing de RNA , Estabilidade de RNA , Fator de Processamento U2AF/química
4.
J Mol Cell Biol ; 11(10): 930-939, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31152582

RESUMO

RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs. In many cases, RBPs engage in an auto-regulatory feedback by directly binding to and influencing the fate of their own mRNAs, exerting control over their own expression. For this feedback control, RBPs employ a variety of mechanisms operating at all levels of post-transcriptional regulation of gene expression. Here we review RBP-mediated autogenous feedback regulation that either serves to maintain protein abundance within a physiological range (by negative feedback) or generates binary, genetic on/off switches important for e.g. cell fate decisions (by positive feedback).


Assuntos
Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica , Humanos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
5.
Sci Rep ; 9(1): 8836, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222112

RESUMO

Many cellular events are driven by changes in protein expression, measurable by mass spectrometry or antibody-based assays. However, using conventional technology, the analysis of transcription factor or membrane receptor expression is often limited by an insufficient sensitivity and specificity. To overcome this limitation, we have developed a high-resolution targeted proteomics strategy, which allows quantification down to the lower attomol range in a straightforward way without any prior enrichment or fractionation approaches. The method applies isotope-labeled peptide standards for quantification of the protein of interest. As proof of principle, we applied the improved workflow to proteins of the unfolded protein response (UPR), a signaling pathway of great clinical importance, and could for the first time detect and quantify all major UPR receptors, transducers and effectors that are not readily detectable via antibody-based-, SRM- or conventional PRM assays. As transcription and translation is central to the regulation of UPR, quantification and determination of protein copy numbers in the cell is important for our understanding of the signaling process as well as how pharmacologic modulation of these pathways impacts on the signaling. These questions can be answered using our newly established workflow as exemplified in an experiment using UPR perturbation in a glioblastoma cell lines.


Assuntos
Glioblastoma/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Dosagem de Genes , Glioblastoma/química , Glioblastoma/patologia , Humanos , Marcação por Isótopo , Proteínas de Membrana/análise , Proteínas de Membrana/normas , Peptídeos/normas , Proteômica/normas , Fatores de Transcrição/análise , Fatores de Transcrição/normas
6.
Acta Neuropathol ; 138(2): 275-293, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31062076

RESUMO

Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Neoplasias/fisiologia , Proteínas Nogo/biossíntese , Osteonectina/biossíntese , Biossíntese de Proteínas , Substância Branca/patologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Ligação Competitiva , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Invasividade Neoplásica , Proteínas Nogo/genética , Osteonectina/genética , Domínios Proteicos , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/fisiologia , Células Tumorais Cultivadas , Substância Branca/metabolismo
7.
Nucleic Acids Res ; 46(3): 1441-1456, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29237037

RESUMO

Eukaryotic ribosome biogenesis is a complex dynamic process which requires the action of numerous ribosome assembly factors. Among them, the eukaryotic Rio protein family members (Rio1, Rio2 and Rio3) belong to an ancient conserved atypical protein kinase/ ATPase family required for the maturation of the small ribosomal subunit (SSU). Recent structure-function analyses suggested an ATPase-dependent role of the Rio proteins to regulate their dynamic association with the nascent pre-SSU. However, the evolutionary origin of this feature and the detailed molecular mechanism that allows controlled activation of the catalytic activity remained to be determined. In this work we provide functional evidence showing a conserved role of the archaeal Rio proteins for the synthesis of the SSU in archaea. Moreover, we unravel a conserved RNA-dependent regulation of the Rio ATPases, which in the case of Rio2 involves, at least, helix 30 of the SSU rRNA and the P-loop lysine within the shared RIO domain. Together, our study suggests a ribosomal RNA-mediated regulatory mechanism enabling the appropriate stimulation of Rio2 catalytic activity and subsequent release of Rio2 from the nascent pre-40S particle. Based on our findings we propose a unified release mechanism for the Rio proteins.


Assuntos
Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas Arqueais/genética , Haloferax volcanii/enzimologia , Proteínas Serina-Treonina Quinases/genética , RNA Ribossômico 18S/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Haloferax volcanii/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Sci Rep ; 6: 31313, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510448

RESUMO

Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Biologia Computacional , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , RNA/genética , RNA Circular
10.
RNA ; 14(8): 1532-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18567812

RESUMO

Pre-mRNA splicing proceeds through assembly of the spliceosome complex, catalysis, and recycling. During each cycle the U4/U6.U5 tri-snRNP is disrupted and U4/U6 snRNA base-pairing unwound, releasing separate post-spliceosomal U4, U5, and U6 snRNPs, which have to be recycled to the splicing-competent tri-snRNP. Previous work implicated p110--the human ortholog of the yeast Prp24 protein--and the LSm2-8 proteins of the U6 snRNP in U4/U6 recycling. Here we show in vitro that these proteins bind synergistically to U6 snRNA: Both purified and recombinant LSm2-8 proteins are able to recruit p110 protein to U6 snRNA via interaction with the highly conserved C-terminal region of p110. Furthermore, the presence of a 2',3'-cyclic phosphate enhances the affinity of U6 snRNA for the LSm2-8 proteins and inversely reduces La protein binding, suggesting a direct role of the 3'-terminal phosphorylation in RNP remodeling during U6 biogenesis.


Assuntos
Proteínas Nucleares/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Antígenos de Neoplasias , Autoantígenos/metabolismo , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , Splicing de RNA , RNA Nuclear Pequeno/química , Ribonucleoproteínas/metabolismo , Antígeno SS-B
11.
Mol Cell Biol ; 24(17): 7392-401, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314151

RESUMO

After each spliceosome cycle, the U4 and U6 snRNAs are released separately and are recycled to the functional U4/U6 snRNP, requiring in the mammalian system the U6-specific RNA binding protein p110 (SART3). Its domain structure is made up of an extensive N-terminal domain with at least seven tetratricopeptide repeat (TPR) motifs, followed by two RNA recognition motifs (RRMs) and a highly conserved C-terminal sequence of 10 amino acids. Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential splicing factor. Recycling activity requires both the RRMs and the TPR domain but not the highly conserved C-terminal sequence. For U6-specific RNA binding, the two RRMs with some flanking regions are sufficient. Yeast two-hybrid assays reveal that p110 interacts through its TPR domain with the U4/U6-specific 90K protein, indicating a specific role of the TPR domain in spliceosome recycling. On the 90K protein, a short internal region (amino acids 416 to 550) suffices for the interaction with p110. Together, these data suggest a model whereby p110 brings together U4 and U6 snRNAs through both RNA-protein and protein-protein interactions.


Assuntos
Antígenos de Neoplasias/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Análise Mutacional de DNA , Células HeLa , Humanos , Modelos Genéticos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA