Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Exp Mol Pathol ; 137: 104898, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729059

RESUMO

INTRODUCTION: NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES: We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS: Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS: AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS: mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.

2.
Front Immunol ; 14: 1225610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646042

RESUMO

CD30 is expressed on Hodgkin lymphomas (HL), many non-Hodgkin lymphomas (NHLs), and non-lymphoid malignancies in children and adults. Tumor expression, combined with restricted expression in healthy tissues, identifies CD30 as a promising immunotherapy target. An anti-CD30 antibody-drug conjugate (ADC) has been approved by the FDA for HL. While anti-CD30 ADCs and chimeric antigen receptors (CARs) have shown promise, their shortcomings and toxicities suggest that alternative treatments are needed. We developed novel anti-CD30 x anti-CD3 bispecific antibodies (biAbs) to coat activated patient T cells (ATCs) ex vivo prior to autologous re-infusions. Our goal is to harness the dual specificity of the biAb, the power of cellular therapy, and the safety of non-genetically modified autologous T cell infusions. We present a comprehensive characterization of the CD30 binding and tumor cell killing properties of these biAbs. Five unique murine monoclonal antibodies (mAbs) were generated against the extracellular domain of human CD30. Resultant anti-CD30 mAbs were purified and screened for binding specificity, affinity, and epitope recognition. Two lead mAb candidates with unique sequences and CD30 binding clusters that differ from the ADC in clinical use were identified. These mAbs were chemically conjugated with OKT3 (an anti-CD3 mAb). ATCs were armed and evaluated in vitro for binding, cytokine production, and cytotoxicity against tumor lines and then in vivo for tumor cell killing. Our lead mAb was subcloned to make a Master Cell Bank (MCB) and screened for binding against a library of human cell surface proteins. Only huCD30 was bound. These studies support a clinical trial in development employing ex vivo-loading of autologous T cells with this novel biAb.


Assuntos
Anticorpos Biespecíficos , Ataxia Telangiectasia , Doença de Hodgkin , Linfoma não Hodgkin , Adulto , Criança , Humanos , Animais , Camundongos , Muromonab-CD3 , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais
3.
Mol Ther Methods Clin Dev ; 28: 262-271, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36816757

RESUMO

The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.

4.
Mol Genet Metab ; 134(1-2): 117-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34340879

RESUMO

Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.


Assuntos
Doença de Fabry/genética , Doença de Fabry/terapia , Edição de Genes/métodos , Edição de Genes/normas , Terapia Genética/métodos , Humanos , Mutação , Fenótipo , alfa-Galactosidase/genética
5.
Sci Rep ; 11(1): 8321, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859303

RESUMO

Interleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


Assuntos
Expressão Gênica/genética , Imunidade , Imunomodulação , Interleucina-12/genética , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Sarcoma/genética , Sarcoma/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoterapia , Interferon gama/metabolismo , Interleucina-12/imunologia , Interleucina-15 , Lentivirus , Camundongos , Sarcoma/terapia
6.
Nat Commun ; 12(1): 1178, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633114

RESUMO

Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy.


Assuntos
Doença de Fabry/enzimologia , Doença de Fabry/terapia , Terapia Genética/métodos , Lentivirus/genética , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico , Adulto , Antígenos CD34 , Células da Medula Óssea , Doença de Fabry/genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Humanos , Leucócitos , Masculino , Pessoa de Meia-Idade , Triexosilceramidas/sangue , Triexosilceramidas/urina
7.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547076

RESUMO

Most intracellular proteins lack hydrophobic pockets suitable for altering their function with drug-like small molecules. Recent studies indicate that some undruggable proteins can be targeted by compounds that can degrade them. For example, thalidomide-like drugs (IMiDs) degrade the critical multiple myeloma transcription factors IKZF1 and IKZF3 by recruiting them to the cereblon E3 ubiquitin ligase. Current loss of signal ("down") assays for identifying degraders often exhibit poor signal-to-noise ratios, narrow dynamic ranges, and false positives from compounds that nonspecifically suppress transcription or translation. Here, we describe a gain of signal ("up") assay for degraders. In arrayed chemical screens, we identified novel IMiD-like IKZF1 degraders and Spautin-1, which, unlike the IMiDs, degrades IKZF1 in a cereblon-independent manner. In a pooled CRISPR-Cas9-based screen, we found that CDK2 regulates the abundance of the ASCL1 oncogenic transcription factor. This methodology should facilitate the identification of drugs that directly or indirectly degrade undruggable proteins.


Assuntos
Proteínas Oncogênicas , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzilaminas , Sistemas CRISPR-Cas , Humanos , Fator de Transcrição Ikaros/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Proteólise/efeitos dos fármacos , Quinazolinas , Talidomida/análise , Talidomida/farmacologia , Fatores de Transcrição
8.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771993

RESUMO

BACKGROUND: Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow. While recent advances in treatment for MM have improved patient outcomes, the 5-year survival rate remains ~50%. A better understanding of the MM cell surface proteome could facilitate development of new directed therapies and assist in stratification and monitoring of patient outcomes. METHODS: In this study, we first used a mass spectrometry (MS)-based discovery-driven cell surface capture (CSC) approach to map the cell surface N-glycoproteome of MM cell lines. Next, we developed targeted MS assays, and applied these to cell lines and primary patient samples to refine the list of candidate tumor markers. Candidates of interest detected by MS on MM patient samples were further validated using flow cytometry (FCM). RESULTS: We identified 696 MM cell surface N-glycoproteins by CSC, and developed 73 targeted MS detection assays. MS-based validation using primary specimens detected 30 proteins with significantly higher abundance in patient MM cells than controls. Nine of these proteins were identified as potential immunotherapeutic targets, including five that were validated by FCM, confirming their expression on the cell surface of primary MM patient cells. CONCLUSIONS: This MM surface N-glycoproteome will be a valuable resource in the development of biomarkers and therapeutics. Further, we anticipate that our targeted MS assays will have clinical benefit for the diagnosis, stratification, and treatment of MM patients.


Assuntos
Biomarcadores Tumorais/sangue , Imunoterapia/métodos , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino
9.
J Immunother Cancer ; 7(1): 355, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856922

RESUMO

Cytokines of the common γ-chain receptor family such as IL-15 are vital with respect to activating immune cells, sustaining healthy immune functions, and augmenting the anti-tumor activity of effector cells, making them ideal candidates for cancer immunotherapy. IL-15, either in its soluble form (IL-15sol) or complexed with IL-15Rα (IL-15Rc), has been shown to exhibit potent anti-tumor activities in various experimental cancer studies. Here we describe the impact of intraperitoneal IL-15 in a cancer cell-delivered IL-15 immunotherapy approach using the 70Z/3-L leukemia mouse model. Whereas both forms of IL-15 led to significantly improved survival rates compared to the parent cell line, there were striking differences in the extent of the improved survival: mice receiving cancer cells secreting IL-15sol showed significantly longer survival and protective long-term immunity compared to those producing IL-15Rc. Interestingly, injection of leukemia cells secreting IL-15sol lead to heightened expansion of CD4+ and CD8+ T-cell populations in the peritoneum compared to IL-15Rc. Cell-secreted IL-15Rc resulted in an influx and/or expansion of NK1.1+ cells in the peritoneum which was much less pronounced in the IL-15sol model. Furthermore, IL-15Rc but not IL-15sol lead to T-cell exhaustion and disease progression. To our knowledge, this is the first study detailing a significantly different biological effect of cell-delivered IL-15sol versus IL-15Rc in a mouse cancer immunotherapy study.


Assuntos
Imunomodulação , Imunoterapia , Interleucina-15/metabolismo , Leucemia/etiologia , Leucemia/metabolismo , Receptores de Interleucina-15/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Interleucina-15/sangue , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia/patologia , Leucemia/terapia , Melanoma Experimental , Camundongos , Ligação Proteica , Receptores de Interleucina-15/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proc Natl Acad Sci U S A ; 116(40): 20097-20103, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527255

RESUMO

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.


Assuntos
Ceramidase Ácida/genética , Deleção de Genes , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Leucodistrofia de Células Globoides/tratamento farmacológico
11.
Expert Opin Biol Ther ; 19(7): 655-670, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31056978

RESUMO

INTRODUCTION: Gene therapies can be envisioned for many disorders where conventional therapies fall short. Lysosomal Storage Disorders (LSDs) are inherited, mostly monogenic, disorders resulting from deficient lysosomal enzyme or co-factor activity. Existing standard-of-care treatments for LSDs are expensive and can negatively impact quality-of-life. They also may not be sufficiently efficacious. LSDs are particularly amenable to gene therapy as modified cells can secrete functional enzyme that can also correct unmodified cells. Gene therapies may thus be able to provide sustained long-term correction for LSD patients. AREAS COVERED: We highlight recent advances and discuss advantages/disadvantages of gene therapies with a focus on lentiviral and adeno-associated virus vectors currently in clinical trials for LSDs. We also mention promising strategies that are close to clinical testing. We emphasize protocols using ex vivo hematopoietic stem cell-directed gene therapy, systemic/liver-directed gene therapy, and brain-directed gene therapy. We also discuss next-generation gene therapy approaches and how they may address emerging challenges in the field. EXPERT OPINION: Gene therapy is still in its infancy with respect to LSDs. However, efficacy and safety has been demonstrated in numerous pre-clinical studies, and promising clinical results suggest that gene therapy treatment for several LSDs is a real possibility.


Assuntos
Terapia Genética , Doenças por Armazenamento dos Lisossomos/terapia , Animais , Encéfalo/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado/metabolismo
13.
Methods Mol Biol ; 1895: 149-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30539536

RESUMO

Suicide transgenes encode proteins that are either capable of activating specific prodrugs into cytotoxic antimetabolites that can trigger cancer cell apoptosis or are capable of directly inducing apoptosis. Suicide gene therapy of cancer (SGTC) involves the targeted or localized delivery of suicide transgene sequences into tumor cells by means of various gene delivery vehicles. SGTC that operates via the potentiation of small-molecule pharmacologic agents can elicit the elimination of cancer cells within a tumor beyond only those cells successfully transduced. Such "bystander effects ", typically mediated by the spread of activated cytotoxic antimetabolites from the transduced cells expressing the suicide transgene to adjacent cells in the tumor, can lead to a significant reduction of the tumor mass without the requirement of transduction of a high percentage of cells within the tumor. The spread of activated cytotoxic molecules to adjacent cells is mediated primarily by diffusion and normally involves gap junctional intercellular communications (GJIC). We have developed a novel SGTC system based on viral vector-mediated delivery of an engineered variant of human deoxycytidine kinase (dCK), which is capable of phosphorylating uridine- and thymidine-based nucleoside analogues that are not substrates for wild-type dCK, such as bromovinyl deoxyuridine (BVdU) and L-deoxythymidine (LdT). Since our dCK-based SGTC system is capable of mediating strong bystander cell killing, it holds promise for clinical translation. In this chapter, we detail the key procedures for the preparation of recombinant lentivectors for the delivery of engineered dCK, transduction of tumor cells, and evaluation of bystander cell killing effects in vitro and in vivo.


Assuntos
Desoxicitidina Quinase/genética , Genes Transgênicos Suicidas , Terapia Genética/métodos , Neoplasias/terapia , Animais , Apoptose , Bromodesoxiuridina/análogos & derivados , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/uso terapêutico , Efeito Espectador , Linhagem Celular Tumoral , Desoxicitidina Quinase/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Timidina/metabolismo , Timidina/uso terapêutico
14.
Am J Pathol ; 189(2): 320-338, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472209

RESUMO

Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.


Assuntos
Ceramidase Ácida/genética , Lipogranulomatose de Farber , Mutação de Sentido Incorreto , Nervo Óptico , Retina , Transtornos da Visão , Ceramidase Ácida/metabolismo , Substituição de Aminoácidos , Animais , Ceramidas/genética , Ceramidas/metabolismo , Modelos Animais de Doenças , Lipogranulomatose de Farber/enzimologia , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Mutantes , Nervo Óptico/enzimologia , Nervo Óptico/patologia , Retina/enzimologia , Retina/patologia , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Transtornos da Visão/enzimologia , Transtornos da Visão/genética , Transtornos da Visão/patologia
15.
Cytotherapy ; 20(8): 1001-1012, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30076069

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) promote wound healing, including after radiotherapy (RT) and surgery. The use of MSCs in regenerative medicine in the context of malignancy, such as to enhance wound healing post-RT/surgery in patients with soft tissue sarcomas (STSs), requires safety validation. The aim of this study was to determine the effects of human MSCs on STS growth in vitro and local recurrence and metastasis in vivo. METHODS: Human primary STS and HT-1080 fibrosarcoma lines were transduced to express luciferase/eGFP (enhanced green fluorescent protein). Sarcoma cells were co-cultured or co-injected with bone marrow-derived MSCs for growth studies. Xenograft tumor models were established with STS lines in NOD/SCID/γcnull mice. To emulate a clinical scenario, subcutaneous tumors were treated with RT/surgery prior to MSC injection into the tumor bed. Local and distant tumor recurrence was studied using histology and bioluminescence imaging. RESULTS: MSCs did not promote STS proliferation upon co-culture in vitro, which was consistent among MSCs from different donors. Co-injection of MSCs with sarcoma cells in mice exhibited no significant tumor-stimulating effect, compared with control mice injected with sarcoma cells alone. MSC administration after RT/surgery had no effect on local recurrence or metastasis of STS. DISCUSSION: These studies are important for the establishment of a safety profile for MSC administration in patients with STS. Our data suggest that MSCs are safe in STS management after standard of care RT/surgery, which can be further investigated in early-phase clinical trials to also determine the efficacy of MSCs in reducing morbidity and to mitigate wound complications in these patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Radioterapia , Sarcoma/patologia , Sarcoma/terapia , Procedimentos Cirúrgicos Operatórios , Adulto , Animais , Técnicas de Cocultura , Terapia Combinada , Células HEK293 , Xenoenxertos , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/patologia , Radioterapia/efeitos adversos , Radioterapia/métodos , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Procedimentos Cirúrgicos Operatórios/métodos , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Orphanet J Rare Dis ; 13(1): 121, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029679

RESUMO

Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.


Assuntos
Lipogranulomatose de Farber/metabolismo , Lipogranulomatose de Farber/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Epilepsias Mioclônicas Progressivas/metabolismo , Epilepsias Mioclônicas Progressivas/patologia , Animais , Lipogranulomatose de Farber/cirurgia , Lipogranulomatose de Farber/terapia , Humanos , Atrofia Muscular Espinal/cirurgia , Atrofia Muscular Espinal/terapia , Epilepsias Mioclônicas Progressivas/cirurgia , Epilepsias Mioclônicas Progressivas/terapia , Esfingolipídeos/metabolismo
17.
J Thorac Cardiovasc Surg ; 156(3): 1305-1315, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937159

RESUMO

OBJECTIVE: Our objective was to develop a rapid-onset and durable gene-delivery strategy that is applicable at the time of transplant to determine its effects on both acute rejection and chronic lung allograft fibrosis using a mouse orthotopic lung transplant model. METHODS: C57BL/6 mice received an orthotopic left lung transplant from syngeneic donors or C57BL/10 donors. By using syngeneic lung transplantation, we established a novel gene transfer protocol with lentivirus luciferase intrabronchial administration to the donor lung ex vivo before transplantation. This strategy was applied in allogeneic lung transplantation with lentivirus engineering expression of human interleukin-10 or lentivirus luciferase (control). RESULTS: Bioluminescent imaging revealed that the highest early transgene expression was achieved when lentivirus luciferase was administered both directly into the donor lung graft ex vivo before implantation and subsequently to the recipient in vivo daily on post-transplant days 1 to 4, compared with post-transplant in vivo administration only (days 0 to 4). Our previous work with adenoviral interleukin-10 gene therapy indicates that early interleukin-10 expression in the allograft is desirable. Therefore, we selected the combined protocol for human interleukin-10 encoding lentiviral vector therapy. In the allogeneic transplant setting, ex vivo and in vivo human interleukin-10 encoding lentiviral vector therapy reduced acute rejection grade (2.0 vs 3.0, P < .05) at day 28. The percentage of fibrotic obliterated airways was reduced in the human interleukin-10 encoding lentiviral vector-treated group (10.9% ± 7.7% vs 40.9% ± 9.3%, P < .05). CONCLUSIONS: Delivery of lentiviral interleukin-10 gene therapy, using a novel combined ex vivo and in vivo delivery strategy, significantly improves acute and chronic rejection in the mouse lung transplant model.


Assuntos
Técnicas de Transferência de Genes , Rejeição de Enxerto/prevenção & controle , Interleucina-10/genética , Transplante de Pulmão , Aloenxertos , Animais , Ensaio de Imunoadsorção Enzimática , Interleucina-10/fisiologia , Lentivirus , Transplante de Pulmão/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Mol Metab ; 12: 76-88, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735266

RESUMO

OBJECTIVES: Neuraminidase 1 (NEU1) cleaves terminal sialic acids of glycoconjugates during lysosomal catabolism. It also modulates the structure and activity of cellular surface receptors affecting diverse pathways. Previously we demonstrated that NEU1 activates the insulin receptor (IR) and that NEU1-deficient CathAS190A-Neo mice (hypomorph of the NEU1 activator protein, cathepsin A/CathA) on a high-fat diet (HFD) develop hyperglycaemia and insulin resistance faster than wild-type animals. The major objective of the current work was to reveal the molecular mechanism by which NEU1 desialylation activates the IR and to test if increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance. METHODS: To test if desialylation causes a conformational change in the IR dimer we measured interaction between the receptor subunits by Bioluminescence Resonance Energy Transfer in the HEK293T cells either overexpressing NEU1 or treated with the NEU1 inhibitor. The influence of NEU1 overexpression on insulin resistance was studied in vitro in palmitate-treated HepG2 cells transduced with NEU1-expressing lentivirus and in vivo in C57Bl6 mice treated with HFD and either pharmacological inducer of NEU1, Ambroxol or NEU1-expressing adenovirus. NEU1-deficient CathAS190A-Neo mice were used as a control. RESULTS: By desialylation of IR, NEU1 induced formation of its active dimer leading to insulin signaling. Overexpression of NEU1 in palmitate-treated HepG2 cells restored insulin signaling, suggesting that increased NEU1 levels may reverse insulin resistance. Five-day treatment of glycemic C57Bl6 mice receiving HFD with the activator of the lysosomal gene network, Ambroxol, increased NEU1 expression and activity in muscle tissue, normalized fasting glucose levels, and improved physiological and molecular responses to glucose and insulin. Ambroxol did not improve insulin sensitivity in obese insulin-resistant CathAS190A-Neo mice indicating that the Ambroxol effect is mediated through NEU1 induction. Sustained increase of liver NEU1 activity through adenovirus-based gene transfer failed to attenuate insulin resistance most probably due to negative feedback regulation of IR expression. CONCLUSION: Together our results demonstrate that increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance suggesting that a pharmacological modulation of NEU1 activity may be potentially explored for restoring insulin sensitivity and resolving hyperglycemia associated with T2DM.


Assuntos
Resistência à Insulina , Neuraminidase/metabolismo , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Ambroxol/farmacologia , Ambroxol/uso terapêutico , Animais , Células HEK293 , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Neuraminidase/genética , Obesidade/tratamento farmacológico
19.
Sci Rep ; 8(1): 1808, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379059

RESUMO

Farber Disease (FD) is an ultra-rare Lysosomal Storage Disorder caused by deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency manifest a spectrum of symptoms including formation of nodules, painful joints, and a hoarse voice. Classic FD patients will develop histiocytes in organs and die in childhood. Monocyte chemotactic protein (MCP-1; CCL2) is significantly elevated in both FD patients and a mouse model we previously generated. Here, to further study MCP-1 in FD, we created an ACDase;MCP-1 double mutant mouse. We show that deletion of MCP-1 reduced leukocytosis, delayed weight loss, and improved lifespan. Reduced inflammation and fibrosis were observed in livers from double mutant animals. Bronchial alveolar lavage fluid analyses revealed a reduction in cellular infiltrates and protein accumulation. Furthermore, reduced sphingolipid accumulation was observed in the lung and liver but not in the brain. The neurological and hematopoietic defects observed in FD mice were maintained. A compensatory cytokine response was found in the double mutants, however, that may contribute to continued signs of inflammation and injury. Taken together, targeting a reduction of MCP-1 opens the door to a better understanding of the mechanistic consequences of ceramide accumulation and may even delay the progression of FD in some organ systems.


Assuntos
Ceramidase Ácida/genética , Quimiocina CCL2/genética , Lipogranulomatose de Farber/genética , Deleção de Sequência/genética , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/genética , Feminino , Fibrose/genética , Inflamação/genética , Leucocitose/genética , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout
20.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L406-L420, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167126

RESUMO

Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.


Assuntos
Ceramidase Ácida/fisiologia , Modelos Animais de Doenças , Lesão Pulmonar/etiologia , Pulmão/patologia , Animais , Líquido da Lavagem Broncoalveolar , Ceramidas/metabolismo , Homozigoto , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Fenótipo , Fosfolipídeos/metabolismo , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA