Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1441908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224597

RESUMO

Introduction: The antiviral activity of recombinant bovine interferon lambda 3 (bovIFN-λ3) against bovine viral diarrhea virus (BVDV) has been demonstrated in vitro in Madin-Darby bovine kidney cells (MDBK) and in vivo in cattle. However, anti-BVDV activity of bovIFN-λ3 has not been studied in bovine respiratory tract epithelial cells, supposedly a primary target of BVDV infection when entering the host by the oronasal route. Methods: Here we investigated the anti-BVDV activity of bovIFN-λ3 in bovine turbinate-derived primary epithelial cells (BTu) using BVDV infection and immunoperoxidase staining, TCID50, RT-qPCR, DNA and transcriptome sequencing, and transfection with plasmids containing the two subunits, IL-28Rα and IL-10Rß that constitute the bovIFN-λ3 receptor. Results: Our immunoperoxidase staining, RT-qPCR, and TCID50 results show that while BVDV was successfully cleared in MDBK cells treated with bovIFN-λ3 and bovIFN-α, only the latter, bovIFN-α, cleared BVDV in BTu cells. Preincubation of MDBK cells with bovIFN-λ3 before BVDV infection was needed to induce optimal antiviral state. Both cell types displayed intact type I and III IFN signaling pathways and expressed similar levels of IL-10Rß subunit of the type III IFN receptor. Sequencing of PCR amplicon of the IL-28Rα subunit revealed intact transmembrane domain and lack of single nucleotide polymorphisms (SNPs) in BTu cells. However, RT-qPCR and transcriptomic analyses showed a lower expression of IL-28Rα transcripts in BTu cells as compared to MDBK cells. Interestingly, transfection of BTu cells with a plasmid encoding IL-28Rα subunit, but not IL-10Rß subunit, established the bovIFN-λ3 sensitivity showing similar anti-BVDV activity to the response in MDBK cells. Conclusion: Our results demonstrate that the sensitivity of cells to bovIFN-λ3 depends not only on the quality but also of the quantity of the IL-28Rα subunit of the heterodimeric receptor. A reduction in IL-28Rα transcript expression was detected in BTu as compared to MDBK cells, despite the absence of spliced variants or SNPs. The establishment of bovIFN-λ3 induced anti-BVDV activity in BTu cells transfected with an IL-28Rα plasmid suggests that the level of expression of this receptor subunit is crucial for the specific antiviral activity of type III IFN in these cells.


Assuntos
Interferon lambda , Interferons , Conchas Nasais , Animais , Bovinos , Interferons/metabolismo , Interferons/imunologia , Conchas Nasais/virologia , Conchas Nasais/imunologia , Conchas Nasais/metabolismo , Antivirais/farmacologia , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interleucinas/genética , Interleucinas/farmacologia , Interleucinas/imunologia , Interleucinas/metabolismo , Linhagem Celular , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Proteínas Recombinantes/farmacologia , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Receptores de Citocinas
2.
Front Microbiol ; 15: 1360397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638908

RESUMO

Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.

3.
Front Vet Sci ; 9: 1028077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387381

RESUMO

The foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) is a papain like protease that cleaves the viral polyprotein and several host factors affecting host cell translation and induction of innate immunity. Introduction of Lpro mutations ablating catalytic activity is not tolerated by the virus, however, complete coding sequence deletion or introduction of targeted amino acid substitutions can render viable progeny. In proof-of-concept studies, we have previously identified and characterized FMDV Lpro mutants that are attenuated in cell culture and in animals, while retaining their capacity for inducing a strong adaptive immunity. By using molecular modeling, we have now identified a His residue (H138), that resides outside the substrate binding and catalytic domain, and is highly conserved across serotypes. Mutation of H138 renders possible FMDV variants of reduced virulence in vitro and in vivo. Kinetics studies showed that FMDV A12-LH138L mutant replicates similarly to FMDV A12-wild type (WT) virus in cells that do not offer immune selective pressure, but attenuation is observed upon infection of primary or low passage porcine epithelial cells. Western blot analysis on protein extracts from these cells, revealed that while processing of translation initiation factor eIF-4G was slightly delayed, no degradation of innate sensors or effector molecules such as NF-κB or G3BP2 was observed, and higher levels of interferon (IFN) and IFN-stimulated genes (ISGs) were induced after infection with A12-LH138L as compared to WT FMDV. Consistent with the results in porcine cells, inoculation of swine with this mutant resulted in a mild, or in some cases, no clinical disease but induction of a strong serological adaptive immune response. These results further support previous evidence that Lpro is a reliable target to derive numerous viable FMDV strains that alone or in combination could be exploited for the development of novel FMD vaccine platforms.

4.
Methods Mol Biol ; 2465: 155-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35118621

RESUMO

Adenovirus vectors offer a convenient platform for the expression of antigens and have become an attractive system for vaccine development. Currently, the most successful approach to the development of new foot-and-mouth disease (FMD) vaccines has been the production of a replication-defective human serotype 5 adenovirus that delivers the capsid and capsid processing coding regions of FMD virus (FMDV) (Ad5-FMD). A specific construct for FMDV serotype A24 has been fully developed into a commercial product fulfilling the requirements of the Center of Veterinary Biologics (CVB) of the Animal and Plant Health Inspection Service (APHIS) of the U.S. Department of Agriculture (USDA), for commercialization in the USA. In this chapter, we describe a standard protocol for the generation and small-scale production of Ad5-FMDV serotype O1Manisa vaccines. We use directional cloning to introduce the FMDV O1Manisa capsid in the Ad5-Blue vector. This is followed by the linearization of the recombinant Ad5 with Pac I and transfection into HEK293 cells for rescue and propagation, and then by increased production and purification. Finally, purified recombinant virus is characterized by determining virus yield and expression of targeted antigen in specific cell type of interest.


Assuntos
Adenovírus Humanos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Adenovírus Humanos/genética , Animais , Anticorpos Antivirais , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Vacinas Sintéticas , Vacinas Virais/genética
5.
Front Microbiol ; 12: 668890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025625

RESUMO

Interferons (IFNs) are considered the first line of defense against viral diseases. Due to their ability to modulate immune responses, they have become an attractive therapeutic option to control virus infections. In fact, like many other viruses, foot-and-mouth disease virus (FMDV), the most contagious pathogen of cloven-hoofed animals, is highly sensitive to the action of IFNs. Previous studies demonstrated that type I, II, and III IFNs, expressed using a replication defective human adenovirus 5 (Ad5) vector, can effectively block FMDV replication in vitro and can protect animals when challenged 1 day after Ad5-IFN treatment, in some cases providing sterile immunity. Rapidly spreading foot-and-mouth disease (FMD) is currently controlled with vaccination, although development of a protective adaptive immune response takes 5-7 days. Therefore, an optimal strategy to control FMD outbreaks is to block virus replication and spread through sustained IFN activity while the vaccine-stimulated adaptive immune response is developed. Challenges with methods of delivery and/or with the relative short IFN protein half-life in vivo, have halted the development of such approach to effectively control FMD in the animal host. One strategy to chemically improve drug pharmacodynamics is the use of pegylation. In this proof-of-concept study, we demonstrate that pegylated recombinant porcine (po)IFNα displays strong and long-lasting antiviral activity against FMDV in vitro and in vivo, completely protecting swine against FMD for at least five days after a single dose. These results highlight the potential of this biotherapeutics to use in combination with vaccines to fully control FMD in the field.

6.
PLoS Pathog ; 16(7): e1008702, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667958

RESUMO

The type I interferon response is an important innate antiviral pathway. Recognition of viral RNA by RIG-I-like receptors (RLRs) activates a signaling cascade that leads to type I interferon (IFN-α/ß) gene transcription. Multiple proteins in this signaling pathway (e.g. RIG-I, MDA5, MAVS, TBK1, IRF3) are regulated by (de)ubiquitination events. Most viruses have evolved mechanisms to counter this antiviral response. The leader protease (Lpro) of foot-and-mouth-disease virus (FMDV) has been recognized to reduce IFN-α/ß gene transcription; however, the exact mechanism is unknown. The proteolytic activity of Lpro is vital for releasing itself from the viral polyprotein and for cleaving and degrading specific host cell proteins, such as eIF4G and NF-κB. In addition, Lpro has been demonstrated to have deubiquitination/deISGylation activity. Lpro's deubiquitination/deISGylation activity and the cleavage/degradation of signaling proteins have both been postulated to be important for reduced IFN-α/ß gene transcription. Here, we demonstrate that TBK1, the kinase that phosphorylates and activates the transcription factor IRF3, is cleaved by Lpro in FMDV-infected cells as well as in cells infected with a recombinant EMCV expressing Lpro. In vitro cleavage experiments revealed that Lpro cleaves TBK1 at residues 692-694. We also observed cleavage of MAVS in HeLa cells infected with EMCV-Lpro, but only observed decreasing levels of MAVS in FMDV-infected porcine LFPK αVß6 cells. We set out to dissect Lpro's ability to cleave RLR signaling proteins from its deubiquitination/deISGylation activity to determine their relative contributions to the reduction of IFN-α/ß gene transcription. The introduction of specific mutations, of which several were based on the recently published structure of Lpro in complex with ISG15, allowed us to identify specific amino acid substitutions that separate the different proteolytic activities of Lpro. Characterization of the effects of these mutations revealed that Lpro's ability to cleave RLR signaling proteins but not its deubiquitination/deISGylation activity correlates with the reduced IFN-ß gene transcription.


Assuntos
Proteína DEAD-box 58/metabolismo , Endopeptidases/metabolismo , Vírus da Febre Aftosa/metabolismo , Interferon Tipo I/biossíntese , Animais , Linhagem Celular , Endopeptidases/genética , Febre Aftosa/imunologia , Febre Aftosa/metabolismo , Vírus da Febre Aftosa/imunologia , Humanos , Proteólise
7.
J Biol Chem ; 293(49): 18841-18853, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30309982

RESUMO

The Gag protein of avian sarcoma virus (ASV) lacks an N-myristoyl (myr) group, but contains structural domains similar to those of HIV-1 Gag. Similarly to HIV-1, ASV Gag accumulates on the plasma membrane (PM) before egress; however, it is unclear whether the phospholipid PI(4,5)P2 binds directly to the matrix (MA) domain of ASV Gag, as is the case for HIV-1 Gag. Moreover, the role of PI(4,5)P2 in ASV Gag localization and budding has been controversial. Here, we report that substitution of residues that define the PI(4,5)P2-binding site in the ASV MA domain (reported in an accompanying paper) interfere with Gag localization to the cell periphery and inhibit the production of virus-like particles (VLPs). We show that co-expression of Sprouty2 (Spry2) or the pleckstrin homology domain of phospholipase Cδ (PH-PLC), two proteins that bind PI(4,5)P2, affects ASV Gag trafficking to the PM and budding. Replacement of the N-terminal 32 residues of HIV-1 MA, which encode its N-terminal myr signal and its PI(4,5)P2-binding site, with the structurally equivalent N-terminal 24 residues of ASV MA created a chimera that localized at the PM and produced VLPs. In contrast, the homologous PI(4,5)P2-binding signal in ASV MA could target HIV-1 Gag to the PM when substituted, but did not support budding. Collectively, these findings reveal a basic patch in both ASV and HIV-1 Gag capable of mediating PM binding and budding for ASV but not for HIV-1 Gag. We conclude that PI(4,5)P2 is a strong determinant of ASV Gag targeting to the PM and budding.


Assuntos
Vírus do Sarcoma Aviário/química , Membrana Celular/metabolismo , Produtos do Gene gag/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Chlorocebus aethiops , Produtos do Gene gag/química , Produtos do Gene gag/genética , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosfolipase C delta/metabolismo , Ligação Proteica , Domínios Proteicos , Liberação de Vírus/fisiologia
8.
Vet Microbiol ; 206: 102-112, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28040311

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease affects many areas of the world, often causing extensive epizootics in livestock, mostly farmed cattle and swine, although sheep, goats and many wild species are also susceptible. In countries where food and farm animals are essential for subsistence agriculture, outbreaks of FMD seriously impact food security and development. In highly industrialized developed nations, FMD endemics cause economic and social devastation mainly due to observance of health measures adopted from the World Organization for Animal Health (OIE). High morbidity, complex host-range and broad genetic diversity make FMD prevention and control exceptionally challenging. In this article we review multiple vaccine approaches developed over the years ultimately aimed to successfully control and eradicate this feared disease.


Assuntos
Surtos de Doenças/veterinária , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/imunologia , Animais , Bovinos , Surtos de Doenças/prevenção & controle , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Gado , Ovinos , Suínos
9.
Virology ; 502: 123-132, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28039799

RESUMO

A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 107 pfu/animal while a dose of 4×107pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine.


Assuntos
Infecções por Adenoviridae/veterinária , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/virologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
10.
Clin Vaccine Immunol ; 23(2): 125-36, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607309

RESUMO

Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvß6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4(+) and CD8(+) gamma interferon (IFN-γ)(+) cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle.


Assuntos
Adenovírus Humanos/genética , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Vetores Genéticos , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/genética , Bovinos , Linhagem Celular , Febre Aftosa/prevenção & controle , Febre Aftosa/virologia , Imunidade Celular , Interferon gama/imunologia , Oligopeptídeos/imunologia , RNA Viral/sangue , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/genética , Viremia
11.
J Mol Biol ; 413(2): 347-58, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21875593

RESUMO

Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.


Assuntos
Sinalização do Cálcio , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipases Tipo C/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Animais , Western Blotting , Células COS , Cloreto de Cálcio/farmacologia , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Ionomicina/farmacologia , Fatores de Transcrição/metabolismo
12.
Traffic ; 12(4): 438-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21176037

RESUMO

Phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2) ], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P(2) is critical for HIV-1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P(2) is unclear. We therefore investigated the binding in vitro of other PIs to EIAV MA and whether intracellular association with compartments bearing these PIs was important for assembly and release of virus-like particles (VLPs) formed by Gag. In vitro, EIAV MA bound phosphatidylinositol 3-phosphate [PI(3)P] with higher affinity than PI(4,5)P(2) as revealed by nuclear magnetic resonance (NMR) spectra upon lipid titration. Gag was detected on the plasma membrane and in compartments enriched in phosphatidylinositol 3,5-biphosphate [PI(3,5)P(2) ]. Treatment of cells with YM201636, a kinase inhibitor that blocks production of PI(3,5)P(2) from PI(3)P, caused Gag to colocalize with aberrant compartments and inhibited VLP release. In contrast to HIV-1, release of EIAV VLPs was not significantly diminished by coexpression with 5-phosphatase IV, an enzyme that specifically depletes PI(4,5)P(2) from the plasma membrane. However, coexpression with synaptojanin 2, a phosphatase with broader specificity, diminished VLP production. PI-binding pocket mutations caused striking budding defects, as revealed by electron microscopy. One of the mutations also modified Gag-Gag interaction, as suggested by altered bimolecular fluorescence complementation. We conclude that PI-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release.


Assuntos
Produtos do Gene gag/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Aminopiridinas/farmacologia , Animais , Antivirais/farmacologia , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Produtos do Gene gag/genética , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Cavalos , Humanos , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/fisiologia , Mutação , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfatos de Fosfatidilinositol/biossíntese , Ligação Proteica/fisiologia , Transporte Proteico , Transfecção , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/fisiologia
13.
J Virol ; 84(13): 6438-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427533

RESUMO

The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca(2+) to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca(2+) provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca(2+) stores. Following activation by binding of its ligand, IP3, it releases Ca(2+) from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca(2+) signaling as a potential novel cofactor in viral particle release.


Assuntos
Cálcio/metabolismo , HIV-1/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Inativação Gênica , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA