Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circulation ; 146(16): 1243-1258, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35993245

RESUMO

BACKGROUND: RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH. METHOD: Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity. RESULTS: They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats. CONCLUSIONS: Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Proliferação de Células , Hipertensão Pulmonar Primária Familiar/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Hipertensão Pulmonar/metabolismo , Monocrotalina/metabolismo , Monocrotalina/toxicidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Artéria Pulmonar , RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
J Mol Cell Cardiol ; 148: 25-33, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835666

RESUMO

The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and COVID-19-related cardiac injury.


Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Fatores Sexuais , Enzima de Conversão de Angiotensina 2/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/epidemiologia , COVID-19/complicações , COVID-19/genética , Doenças Cardiovasculares/complicações , Progressão da Doença , Suscetibilidade a Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação , Masculino , Microcirculação , Obesidade/complicações , Fatores de Risco , Fumar , Trombose/complicações , Trombose/epidemiologia
3.
J Mol Med (Berl) ; 97(10): 1385-1398, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31448389

RESUMO

Sex differences are evident in the pathophysiology of heart failure (HF). Progression of HF is promoted by cardiac fibrosis and no fibrosis-specific therapies are currently available. The fibrotic response is mediated by cardiac fibroblasts (CFs), and a central event is their phenotypic transition to pro-fibrotic myofibroblasts. These myofibroblasts may arise from various cellular origins including resident CFs and epicardial and endothelial cells. Both female subjects in clinical studies and female animals in experimental studies generally present less cardiac fibrosis compared with males. This difference is at least partially considered attributable to the ovarian hormone 17ß-estradiol (E2). E2 signals via estrogen receptors to regulate genes are involved in the fibrotic response and myofibroblast transition. Besides protein-coding genes, E2 also regulates transcription of microRNA that modulate cardiac fibrosis. Sex dimorphism, E2, and miRNAs form multi-level regulatory networks in the pathophysiology of cardiac fibrosis, and the mechanism of these networks is not yet fully deciphered. Therefore, this review is aimed at summarizing current knowledge on sex differences, E2, and estrogen receptors in cardiac fibrosis, emphasizing on microRNAs and myofibroblast origins. KEY MESSAGES: • E2 and ERs regulate cardiac fibroblast function. • E2 and ERs may distinctly affect male and female cardiac fibrosis pathophysiology. • Sex, E2, and miRNAs form multi-level regulatory networks in cardiac fibrosis. • Sex-dimorphic and E2-regulated miRNAs affect mesenchymal transition.


Assuntos
Estrogênios/metabolismo , MicroRNAs/genética , Miocárdio/metabolismo , Transdução de Sinais , Animais , Feminino , Fibrose , Regulação da Expressão Gênica , Humanos , Masculino , Miocárdio/patologia , Fatores Sexuais
4.
Trends Cardiovasc Med ; 29(8): 429-437, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30553703

RESUMO

Heart failure is characterized by the constant interplay between the underlying cardiac insult, degree of myocardial dysfunction and the activity of compensatory neurohormonal mechanisms. The sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS) become activated to maintain cardiac output; however, their chronic hyperactivity will eventually become deleterious. Several nuclear hormone receptors, including the mineralocorticoid receptor and estrogen receptor, are well-known to modulate cardiac disease. Recently, the subfamily of NR4A nuclear receptors i.e. Nur77, Nurr1 and NOR-1, are emerging as key players in cardiac stress responses, as well as pivotal regulators of neurohormonal mechanisms. In this review, we summarize current literature on NR4A nuclear receptors in the heart and in various components of the SNS, RAAS and immune system and discuss the functional implications for NR4As in cardiac function and disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Neurotransmissores/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Remodelação Ventricular , Animais , Cardiopatias/imunologia , Cardiopatias/fisiopatologia , Humanos , Miocárdio/imunologia , Sistema Renina-Angiotensina , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
5.
J Biol Chem ; 293(39): 15070-15083, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30111591

RESUMO

Gene targeting via homologous recombination can occasionally result in incomplete disruption of the targeted gene. Here, we show that a widely used Nur77-deficient transgenic mouse model expresses a truncated protein encoding for part of the N-terminal domain of nuclear receptor Nur77. This truncated Nur77 protein is absent in a newly developed Nur77-deficient mouse strain generated using Cre-Lox recombination. Comparison of these two mouse strains using immunohistochemistry, flow cytometry, and colony-forming assays shows that homologous recombination-derived Nur77-deficient mice, but not WT or Cre-Lox-derived Nur77-deficient mice, suffer from liver immune cell infiltrates, loss of splenic architecture, and increased numbers of bone marrow hematopoietic stem cells and splenic colony-forming cells with age. Mechanistically, we demonstrate that the truncated Nur77 N-terminal domain protein maintains the stability and activity of hypoxia-inducible factor (HIF)-1, a transcription factor known to regulate bone marrow homeostasis. Additionally, a previously discovered, but uncharacterized, human Nur77 transcript variant that encodes solely for its N-terminal domain, designated TR3ß, can also stabilize and activate HIF-1α. Meta-analysis of publicly available microarray data sets shows that TR3ß is highly expressed in human bone marrow cells and acute myeloid leukemia samples. In conclusion, our study provides evidence that a transgenic mouse model commonly used to study the biological function of Nur77 has several major drawbacks, while simultaneously identifying the importance of nongenomic Nur77 activity in the regulation of bone marrow homeostasis.


Assuntos
Células da Medula Óssea/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Domínios Proteicos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Camundongos , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/química
6.
Cell Rep ; 24(8): 2127-2140.e7, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134173

RESUMO

Activation of macrophages by inflammatory stimuli induces reprogramming of mitochondrial metabolism to support the production of pro-inflammatory cytokines and nitric oxide. Hallmarks of this metabolic rewiring are downregulation of α-ketoglutarate formation by isocitrate dehydrogenase (IDH) and accumulation of glutamine-derived succinate, which enhances the inflammatory response via the activity of succinate dehydrogenase (SDH). Here, we identify the nuclear receptor Nur77 (Nr4a1) as a key upstream transcriptional regulator of this pro-inflammatory metabolic switch in macrophages. Nur77-deficient macrophages fail to downregulate IDH expression and accumulate higher levels of succinate and other TCA cycle-derived metabolites in response to inflammatory stimulation in a glutamine-independent manner. Consequently, these macrophages produce more nitric oxide and pro-inflammatory cytokines in an SDH-dependent manner. In vivo, bone marrow Nur77 deficiency exacerbates atherosclerosis development and leads to increased circulating succinate levels. In summary, Nur77 induces an anti-inflammatory metabolic state in macrophages that protects against chronic inflammatory diseases such as atherosclerosis.


Assuntos
Regulação da Expressão Gênica/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Humanos
7.
Cardiovasc Res ; 114(12): 1617-1628, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850786

RESUMO

Aims: Cardiac remodelling and heart failure are promoted by persistent sympathetic activity. We recently reported that nuclear receptor Nur77 may protect against sympathetic agonist-induced cardiac remodelling in mice. The sympathetic co-transmitter neuropeptide Y (NPY) is co-released with catecholamines and is a known cardiac modulator and predictor of heart failure mortality. Recently, transcriptome analyses revealed NPY as a putative target of Nur77. In this study, we assess whether Nur77 modulates adverse cardiac remodelling via NPY signalling. Methods and results: Nur77 represses NPY expression in the PC12 adrenal chromaffin cell line. Accordingly, NPY levels are higher in adrenal gland, plasma, and heart from Nur77-KO compared to wild-type mice. Conditioned medium from Nur77-silenced chromaffin cells and serum from Nur77-KO mice induce marked hypertrophy in cultured neonatal rat cardiomyocytes, which is inhibited by the NPY type 1 receptor (NPY1R) antagonist BIBO3304. In cardiomyocytes from Nur77-KO mice, intracellular Ca2+ is increased partially via the NPY1R. This is independent from elevated circulating NPY since cardiomyocyte-specific Nur77-deficient mice (CM-KO) do not have elevated circulating NPY, but do exhibit BIBO3304-sensitive, increased cardiomyocyte intracellular Ca2+. In vivo, this translates to NPY1R antagonism attenuating cardiac calcineurin activity and isoproterenol-induced cardiomyocyte hypertrophy and fibrosis in full-body Nur77-KO mice, but not in CM-KO mice. Conclusions: The cardioprotective action of Nur77 can be ascribed to both inhibition of circulating NPY levels and to cardiomyocyte-specific modulation of NPY-NPY1R signalling. These results reveal the underlying mechanism of Nur77 as a promising modifier gene in heart failure.


Assuntos
Glândulas Suprarrenais/metabolismo , Cardiomegalia/prevenção & controle , Miócitos Cardíacos/metabolismo , Neuropeptídeo Y/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Sistema Nervoso Simpático/metabolismo , Remodelação Ventricular , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Feminino , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Neuropeptídeo Y/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células PC12 , Ratos , Ratos Wistar , Receptores de Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiopatologia
8.
J Am Heart Assoc ; 5(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738788

RESUMO

BACKGROUND: Circulating angiogenic cells (CACs) are peripheral blood cells whose functional capacity inversely correlates with cardiovascular risk and that have therapeutic benefits in animal models of cardiovascular disease. However, donor age and disease state influence the efficacy of autologous cell therapy. We sought to determine whether age or coronary artery disease (CAD) impairs the therapeutic potential of CACs for myocardial infarction (MI) and whether the use of ex vivo gene therapy to overexpress endothelial nitric oxide (NO) synthase (eNOS) overcomes these defects. METHODS AND RESULTS: We recruited 40 volunteers varying by sex, age (< or ≥45 years), and CAD and subjected their CACs to well-established functional tests. Age and CAD were associated with reduced CAC intrinsic migration (but not specific response to vascular endothelial growth factor, adherence of CACs to endothelial tubes, eNOS mRNA and protein levels, and NO production. To determine how CAC function influences therapeutic potential, we injected the 2 most functional and the 2 least functional CAC isolates into mouse hearts post MI. The high-function isolates substantially improved cardiac function, whereas the low-function isolates led to cardiac function only slightly better than vehicle control. Transduction of the worst isolate with eNOS cDNA adenovirus increased NO production, migration, and cardiac function of post-MI mice implanted with the CACs. Transduction of the best isolate with eNOS small interfering RNA adenovirus reduced all of these capabilities. CONCLUSIONS: Age and CAD impair multiple functions of CACs and limit therapeutic potential for the treatment of MI. eNOS gene therapy in CACs from older donors or those with CAD has the potential to improve autologous cell therapy outcomes.


Assuntos
Doença da Artéria Coronariana/enzimologia , Células Progenitoras Endoteliais/enzimologia , Células Progenitoras Endoteliais/transplante , Infarto do Miocárdio/cirurgia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Transplante de Células-Tronco/métodos , Adulto , Idoso , Animais , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Doença da Artéria Coronariana/diagnóstico , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Fenótipo , Interferência de RNA , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais , Fatores de Tempo , Transdução Genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA