Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 68(2): 189-97, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15095340

RESUMO

Treatment of in vitro matured bovine oocytes with colcemid results in a membrane protrusion that contains maternal chromosomes, which can be easily removed by aspiration. Four experiments were designed to evaluate the overall and temporal effects of conditioned medium (CM) by bovine cumulus cells on development of nuclear transfer (NT) bovine embryos and to examine the chromosomal composition and allocation of inner cell mass (ICM) and trophectoderm (TE) of the subsequent blastocysts. The nuclear transfer embryos were cultured in various CR1aa media conditioned by preculture with bovine cumulus cells. Development to the blastocyst stage in BSA-containing CM (BCM) and serum-containing CM (SCM) were similar to co-culture group (24-30%). The 24 hr-conditioned BCM yielded higher blastocyst development than 48 and 72 hr-conditioned BCM. Temporary exposure of embryos to BCM and SCM followed by CR1aa was also studied. Morula and blastocyst development were not different among the groups cultured in BCM for 72, 96, and 168 hr, but were significantly higher (P < 0.01) than groups exposed to BCM for 24 and 48 hr, respectively. Blastocyst development in SCM for 24 hr (29%), 96 hr (25%), and 168 hr (27%) were much higher (P < 0.05) than those in SCM for 48 hr (12%) and 72 hr (10%). The analyses of chromosomal composition of the resulting blastocysts indicate approximately 80% of the blastocysts cultured in CR1aa with co-culture or groups initially exposed to BCM for 24 hr followed by culture in CR1aa were diploid. However, the incidence of diploidy were only 36-60% in SCM-cultured groups and groups cultured in BCM beyond 48 hr. Conditioned media did not affect the allocation of ICM and TE in the blastocyst. No difference was found in the ratio of inner cell mass to total cells in co-culture, BCM or SCM groups (0.424, 0.441, and 0.473, respectively). In conclusion, bovine cumulus cell-CM and CR1aa with co-culture supported comparable development and blastocyst ICM:total cell ratio of bovine NT embryos. However, CM affected the blastocyst chromosomal composition and induced higher mixploidy.


Assuntos
Blastocisto/fisiologia , Núcleo Celular/metabolismo , Cromossomos , Técnicas de Cultura Embrionária , Animais , Antineoplásicos Fitogênicos/farmacologia , Bovinos , Núcleo Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Demecolcina/farmacologia , Feminino , Gravidez
2.
Reprod Fertil Dev ; 16(7): 675-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15740690

RESUMO

The objectives of the present study were to: (1) clone horses using adult cumulus cells; and (2) determine whether the cumulus cell donor affected the outcome. In vivo-matured cumulus-oocyte complexes were obtained using transvaginal ultrasound-guided follicle aspiration; oocytes were used as cytoplasts, whereas cumulus cells (from one of three different mares) were used as donor cells. Immediately following nuclear transfer and activation procedures, cloned embryos were transferred surgically to the oviduct of recipient mares (n = 2-5 embryos per recipient) that had ovulated within 24 h prior to the transfer. An initial pregnancy examination was performed between Days 14 and 16 (Day 0 = surgery); subsequent examinations were then performed every 7-10 days. A total of 136 follicles were aspirated in 96 mares, from which 72 oocytes were recovered (53%). Sixty-two cloned embryos were transferred to recipient mares, which resulted in seven (11.3%) ultrasonographically detectable conceptuses between Days 14 and 16. All seven conceptuses were lost spontaneously between Days 16 and 80. Cumulus cells from Mare 160 tended (P = 0.08) to result in a higher embryo survival rate than cumulus cells from Mare 221 (4/17 v. 1/25 respectively). To our knowledge, this is the first report documenting the establishment of cloned equine pregnancies derived from adult cumulus cells.


Assuntos
Clonagem de Organismos , Cavalos , Folículo Ovariano/citologia , Animais , Núcleo Celular , Células Cultivadas , Senescência Celular , Perda do Embrião , Transferência Embrionária , Feminino , Técnicas de Transferência Nuclear , Oócitos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA