Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 197(3): 407-19, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22547407

RESUMO

The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Receptor PAR-1/metabolismo , Ubiquitina/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Western Blotting , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Células HeLa , Humanos , Imunoprecipitação , Lisossomos/metabolismo , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor PAR-1/genética , Ubiquitinação , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Cell ; 139(2): 337-51, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837035

RESUMO

Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid-binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends on PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Técnicas de Silenciamento de Genes , Complexo de Golgi/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Transportadoras/metabolismo
3.
Mol Biol Cell ; 15(12): 5538-50, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15469987

RESUMO

Heterotrimeric G proteins have been implicated in the regulation of membrane trafficking, but the mechanisms involved are not well understood. Here, we report that overexpression of the stimulatory G protein subunit (Galphas) promotes ligand-dependent degradation of epidermal growth factor (EGF) receptors and Texas Red EGF, and knock-down of Galphas expression by RNA interference (RNAi) delays receptor degradation. We also show that Galphas and its GTPase activating protein (GAP), RGS-PX1, interact with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a critical component of the endosomal sorting machinery. Galphas coimmunoprecipitates with Hrs and binds Hrs in pull-down assays. By immunofluorescence, exogenously expressed Galphas colocalizes with myc-Hrs and GFP-RGS-PX1 on early endosomes, and expression of either Hrs or RGS-PX1 increases the localization of Galphas on endosomes. Furthermore, knock-down of both Hrs and Galphas by double RNAi causes greater inhibition of EGF receptor degradation than knock-down of either protein alone, suggesting that Galphas and Hrs have cooperative effects on regulating EGF receptor degradation. These observations define a novel regulatory role for Galphas in EGF receptor degradation and provide mechanistic insights into the function of Galphas in endocytic sorting.


Assuntos
Receptores ErbB/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfoproteínas/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas RGS/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Fatores de Tempo , Xantenos/farmacologia
4.
Proc Natl Acad Sci U S A ; 100(14): 8270-5, 2003 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12826607

RESUMO

We have isolated an RGS-GAIP interacting protein that links RGS proteins to protein degradation. GIPN (GAIP interacting protein N terminus) is a 38-kDa protein with an N-terminal leucine-rich region, a central RING finger-like domain, and a putative C-terminal transmembrane domain. GIPN binds exclusively to RGS proteins of subfamily A, RGS-GAIP, RGSZ1, and RGSZ2. The N-terminal leucine-rich region of GIPN interacts with the cysteine-rich motif of RGS-GAIP. GIPN mRNA is ubiquitously expressed, and GIPN is found on the plasma membrane of transfected HEK293 cells. Endogenous GIPN is concentrated along the basolateral plasma membrane of proximal and distal tubules in rat kidney, where many G protein-coupled receptors and some G proteins are also located. Two immunoreactive species are found in rat kidney, a 38-kDa cytosolic form and an approximately 94-kDa membrane form. GIPN shows Zn2+- and E1/E2-dependent autoubiquitination in vitro, suggesting that it has E3 ubiquitin ligase activity. Overexpression of GIPN stimulates proteasome-dependent reduction of endogenous G alpha i3 in HEK293 cells and reduces the half-life of overexpressed G alpha i3-YFP. Thus, our findings suggest that GIPN is involved in the degradation of G alpha i3 subunits via the proteasome pathway. RGS-GAIP functions as a bifunctional adaptor that binds to G alpha subunits through its RGS domain and to GIPN through its cysteine string motif.


Assuntos
Cisteína Endopeptidases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligases/fisiologia , Complexos Multienzimáticos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromossomos Humanos Par 6/genética , DNA Complementar/genética , Regulação da Expressão Gênica , Biblioteca Gênica , Humanos , Rim/citologia , Rim/metabolismo , Ligases/química , Ligases/genética , Camundongos , Dados de Sequência Molecular , Hipófise/citologia , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas RGS , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
5.
Proc Natl Acad Sci U S A ; 99(10): 6767-72, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11997453

RESUMO

There are 17 human members of the sorting nexin (SNX) family of proteins that contain Phox (PX) domains. Yeast orthologs function in vesicular trafficking and mammalian proteins have been implicated in endocytic trafficking of cell surface receptors. The first member of this family, SNX1, was identified via interaction with the epidermal growth factor receptor. The present studies indicate that SNX1 and SNX2 are colocalized to tubulovesicular endosomal membranes and this localization depends on PI 3-kinase activity. Point mutations in the PX domain that abolish recognition of phosphorylated phosphatidylinositol (PtdIns) in vitro abolish vesicle localization in vivo indicating that lipid binding by the PX domain is necessary for localization to vesicle membranes. Deletion of a predicted coiled-coil region in the COOH terminus of SNX1 also abolished vesicle localization, indicating that this helical domain, too, is necessary for SNX1 localization. Thus, both PX domain recognition of PtdIns and COOH terminal helical domains are necessary for localization of SNX1 with neither alone being sufficient. Regulated overexpression of the NH(2) terminus of SNX1 containing the PX domain decreased the rate of ligand-induced epidermal growth factor receptor degradation, an effect consistent with inhibition of endogenous SNX1 function in the endosome compartment. SNX1 thus functions in regulating trafficking in the endosome compartment via PX domain recognition of phosphorylated PtdIns and via interaction with other protein components.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Regulação para Baixo , Expressão Gênica , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Coelhos , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA