Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 13(1): 311-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951138

RESUMO

BACKGROUND: Cachexia-associated skeletal muscle wasting or 'sarcopenia' is highly prevalent in ovarian cancer and contributes to poor outcome. Drivers of cachexia-associated sarcopenia in ovarian cancer remain elusive, underscoring the need for novel and better models to identify tumour factors inducing sarcopenia. We aimed to assess whether factors present in ascites of sarcopenic vs. non-sarcopenic ovarian cancer patients differentially affect protein metabolism in skeletal muscle cells and to determine if these effects are correlated to cachexia-related patient characteristics. METHODS: Fifteen patients with an ovarian mass and ascites underwent extensive physical screening focusing on cachexia-related parameters. Based on computed tomography-based body composition imaging, six cancer patients were classified as sarcopenic and six were not; three patients with a benign condition served as an additional non-sarcopenic control group. Ascites was collected, and concentrations of cachexia-associated factors were assessed by enzyme-linked immunosorbent assay. Subsequently, ascites was used for in vitro exposure of C2C12 myotubes followed by measurements of protein synthesis and breakdown by radioactive isotope tracing, qPCR-based analysis of atrophy-related gene expression, and NF-κB activity reporter assays. RESULTS: C2C12 protein synthesis was lower after exposure to ascites from sarcopenic patients (sarcopenia 3.1 ± 0.1 nmol/h/mg protein vs. non-sarcopenia 5.5 ± 0.2 nmol/h/mg protein, P < 0.01), and protein breakdown rates tended to be higher (sarcopenia 31.2 ± 5.2% vs. non-sarcopenia 20.9 ± 1.9%, P = 0.08). Ascites did not affect MuRF1, Atrogin-1, or REDD1 expression of C2C12 myotubes, but NF-κB activity was specifically increased in cells exposed to ascites from sarcopenic patients (sarcopenia 2.2 ± 0.4-fold compared with control vs. non-sarcopenia 1.2 ± 0.2-fold compared with control, P = 0.01). Protein synthesis and breakdown correlated with NF-κB activity (rs  = -0.60, P = 0.03 and rs  = 0.67, P = 0.01, respectively). The skeletal muscle index of the ascites donors was also correlated to both in vitro protein synthesis (rs  = 0.70, P = 0.005) and protein breakdown rates (rs  = -0.57, P = 0.04). CONCLUSIONS: Ascites of sarcopenic ovarian cancer patients induces pronounced skeletal muscle protein metabolism changes in C2C12 cells that correlate with clinical muscle measures of the patient and that are characteristic of cachexia. The use of ascites offers a new experimental tool to study the impact of both tumour-derived and systemic factors in various cachexia model systems, enabling identification of novel drivers of tissue wasting in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Sarcopenia , Ascite/etiologia , Ascite/metabolismo , Ascite/patologia , Caquexia/diagnóstico , Humanos , Músculo Esquelético/patologia , Neoplasias Ovarianas/patologia , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Sarcopenia/metabolismo
2.
Mol Nutr Food Res ; 65(1): e1900942, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574416

RESUMO

Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.


Assuntos
Gorduras na Dieta/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Trifosfato de Adenosina/metabolismo , Animais , Gorduras na Dieta/farmacocinética , Estresse do Retículo Endoplasmático , Ácidos Graxos/efeitos adversos , Ácidos Graxos/farmacocinética , Humanos , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Transl Med ; 12(559)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878981

RESUMO

Intertissue communication is a fundamental feature of metabolic regulation, and the liver is central to this process. We have identified sparc-related modular calcium-binding protein 1 (SMOC1) as a glucose-responsive hepatokine and regulator of glucose homeostasis. Acute intraperitoneal administration of SMOC1 improved glycemic control and insulin sensitivity in mice without changes in insulin secretion. SMOC1 exerted its favorable glycemic effects by inhibiting adenosine 3',5'-cyclic monophosphate (cAMP)-cAMP-dependent protein kinase (PKA)-cAMP response element-binding protein (CREB) signaling in the liver, leading to decreased gluconeogenic gene expression and suppression of hepatic glucose output. Overexpression of SMOC1 in the liver or once-weekly intraperitoneal injections of a stabilized SMOC1-FC fusion protein induced durable improvements in glucose tolerance and insulin sensitivity in db/db mice, without adverse effects on adiposity, liver histopathology, or inflammation. Furthermore, circulating SMOC1 correlated with hepatic and systemic insulin sensitivity and was decreased in obese, insulin-resistant humans. Together, these findings identify SMOC1 as a potential pharmacological target for the management of glycemic control in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia , Glucose , Controle Glicêmico , Insulina , Fígado , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Metab ; 17: 71-81, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30174227

RESUMO

OBJECTIVE: Intramyocellular lipid (IMCL) storage negatively associates with insulin resistance, albeit not in endurance-trained athletes. We investigated the putative contribution of lipid droplet (LD) morphology and subcellular localization to the so-called athlete's paradox. METHODS: We performed quantitative immunofluorescent confocal imaging of muscle biopsy sections from endurance Trained, Lean sedentary, Obese, and Type 2 diabetes (T2DM) participants (n = 8/group). T2DM patients and Trained individuals were matched for IMCL content. Furthermore we performed this analysis in biopsies of T2DM patients before and after a 12-week exercise program (n = 8). RESULTS: We found marked differences in lipid storage morphology between trained subjects and T2DM: the latter group mainly store lipid in larger LDs in the subsarcolemmal (SS) region of type II fibers, whereas Trained store lipid in a higher number of LDs in the intramyofibrillar (IMF) region of type I fibers. In addition, a twelve-week combined endurance and strength exercise program resulted in a LD phenotype shift in T2DM patients partly towards an 'athlete-like' phenotype, accompanied by improved insulin sensitivity. Proteins involved in LD turnover were also more abundant in Trained than in T2DM and partly changed in an 'athlete-like' fashion in T2DM patients upon exercise training. CONCLUSIONS: Our findings provide a physiological explanation for the athlete's paradox and reveal LD morphology and distribution as a major determinant of skeletal muscle insulin sensitivity.


Assuntos
Exercício Físico/fisiologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Adulto , Atletas , Biópsia por Agulha/métodos , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteínas de Ligação ao GTP , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Países Baixos , Obesidade/metabolismo , Sobrepeso/metabolismo , Resistência Física/fisiologia
5.
J Lipid Res ; 59(10): 1977-1986, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30042157

RESUMO

Nonalcoholic fatty liver disease (NAFLD) comprises fat-accumulating conditions within hepatocytes that can cause severe liver damage and metabolic comorbidities. Studies suggest that mitochondrial dysfunction contributes to its development and progression and that the hepatic lipidome changes extensively in obesity and in NAFLD. To gain insight into the relationship between lipid metabolism and disease progression through different stages of NAFLD, we performed lipidomic analysis of plasma and liver biopsy samples from obese patients with nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH) and from those without NAFLD. Congruent with earlier studies, hepatic lipid levels overall increased with NAFLD. Lipid species that differed with NAFLD severity were related to mitochondrial dysfunction; specifically, hepatic cardiolipin and ubiquinone accumulated in NAFL, and levels of acylcarnitine increased with NASH. We propose that increased levels of cardiolipin and ubiquinone may help to preserve mitochondrial function in early NAFLD, but that mitochondrial function eventually fails with progression to NASH, leading to increased acylcarnitine. We also found a negative association between hepatic odd-chain phosphatidylcholine and NAFLD, which may result from mitochondrial dysfunction-related impairment of branched-chain amino acid catabolism. Overall, these data suggest a close link between accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD.


Assuntos
Progressão da Doença , Metabolismo dos Lipídeos , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Adulto , Estudos de Coortes , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue
6.
Am J Physiol Endocrinol Metab ; 308(11): E960-70, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852007

RESUMO

Emerging evidence indicates that skeletal muscle lipid droplets are an important control point for intracellular lipid homeostasis and that regulating fatty acid fluxes from lipid droplets might influence mitochondrial capacity. We used pharmacological blockers of the major triglyceride lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase, to show that a large proportion of the fatty acids that are transported into myotubes are trafficked through the intramyocellular triglyceride pool. We next tested whether increasing lipolysis from intramyocellular lipid droplets could activate transcriptional responses to enhance mitochondrial and fatty acid oxidative capacity. ATGL was overexpressed by adenoviral and adenoassociated viral infection in C2C12 myotubes and the tibialis anterior muscle of C57Bl/6 mice, respectively. ATGL overexpression in C2C12 myotubes increased lipolysis, which was associated with increased peroxisome proliferator-activated receptor (PPAR)-∂ activity, transcriptional upregulation of some PPAR∂ target genes, and enhanced mitochondrial capacity. The transcriptional responses were specific to ATGL actions and not a generalized increase in fatty acid flux in the myotubes. Marked ATGL overexpression (20-fold) induced modest molecular changes in the skeletal muscle of mice, but these effects were not sufficient to alter fatty acid oxidation. Together, these data demonstrate the importance of lipid droplets for myocellular fatty acid trafficking and the capacity to modulate mitochondrial capacity by enhancing lipid droplet lipolysis in vitro; however, this adaptive program is of minor importance when superimposing the normal metabolic stresses encountered in free-moving animals.


Assuntos
Lipase/fisiologia , Metabolismo dos Lipídeos/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
7.
Endocrinology ; 153(9): 4278-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733971

RESUMO

Catecholamine-stimulated lipolysis occurs by activating adenylate cyclase and raising cAMP levels, thereby increasing protein kinase A (PKA) activity. This results in phosphorylation and modulated activity of several key lipolytic proteins. Adipose triglyceride lipase (ATGL) is the primary lipase for the initial step in triacylglycerol hydrolysis, and ATGL activity is increased during stimulated lipolysis. Here, we demonstrate that murine ATGL is phosphorylated by PKA at several serine residues in vitro and identify Ser(406) as a functionally important site. ATGL null adipocytes expressing ATGL S406A (nonphosphorylatable) had reduced stimulated lipolysis. Studies in mice demonstrated increased ATGL Ser(406) phosphorylation during fasting and moderate intensity exercise, conditions associated with elevated lipolytic rates. ATGL Ser(404) (corresponding to murine Ser(406)) phosphorylation was increased by ß-adrenergic stimulation but not 5'AMP-activated protein kinase activation in human subcutaneous adipose tissue explants, which correlated with lipolysis rates. Our studies suggest that ß-adrenergic activation can result in PKA-mediated phosphorylation of ATGL Ser(406), to moderately increase ATGL-mediated lipolysis.


Assuntos
Tecido Adiposo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipase/metabolismo , Animais , Lipase/química , Lipase/genética , Lipólise/genética , Lipólise/fisiologia , Camundongos , Fosforilação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA