Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483701

RESUMO

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Assuntos
Herbicidas , Poluentes do Solo , Humanos , Adolescente , Solo , Herbicidas/toxicidade , Herbicidas/análise , Argila , Fazendas , Poluentes do Solo/análise , Adsorção , Saúde Ambiental , Óxidos
2.
Curr Microbiol ; 80(12): 397, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907801

RESUMO

The release of organic and inorganic contaminants into soil from industry, agriculture, and urbanization has become a major issue of international concern, particularly the heavy metals such as aluminum (Al) and the chemical phenanthrene (PHE). Due to their potential toxicity and non-biodegrade in the environment, efficient remediation methods are urgently needed. Recently, research has comprehensively discussed using plants and their endophytes in bioremediation efforts. Endophytic Bacillus sp. R1, isolated from Brassica napus permanently contaminated with Al and PHE, has growth-promoting properties and can efficiently detoxify these contaminants. The pot experiment indicated that compared to the Al combined PHE contaminated soil alone treatment, the R1 treatment led to increased Al accumulation in canola roots across different levels of PHE, Al, and combined PHE and Al contamination. However, Al accumulation in canola shoots and seeds remained unchanged for all treatments. Moreover, PHE in canola roots and shoots was decreased by R1 inoculation and thereby reducing 26.12-60.61% PHE translocated into canola seeds. Additionally, R1 inoculation significantly increased the proportion of extractable Al and, decreased the proportion of acid-soluble inorganic Al and humic-acid Al, but did not affect the concentration of organically complexed Al. In summary, endophyte R1 can degrade PHE, improve canola roots' Al uptake by increasing soil available Al, and scavenge the reactive oxygen species through production of antioxidant enzymes to help alleviate the toxicity of canola co-contaminated with aluminum and phenanthrene.


Assuntos
Bacillus , Brassica napus , Fenantrenos , Poluentes do Solo , Bacillus/metabolismo , Biodegradação Ambiental , Alumínio/toxicidade , Alumínio/metabolismo , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo
3.
World J Microbiol Biotechnol ; 39(10): 283, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594588

RESUMO

The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.


Assuntos
Arsênio , Poluentes Ambientais , Biodegradação Ambiental , Biomassa , Proteobactérias
4.
Environ Geochem Health ; 45(5): 1599-1614, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35538333

RESUMO

Pesticides are the most cost-effective means of pest control; however, the serious concern is about the non-target effects due to their extensive and intensive use in both agricultural and non-agricultural settings. The degradation rate constant (k) and half-life (DT50) of four commonly used pesticides, glyphosate, 2,4-D, chlorothalonil and dimethoate were determined in five Australian urban landscape soils, with varying physicochemical characteristics, to assess their environmental and human health risks. The k values (day-1) for the selected pesticides were inversely proportional to those of organic carbon (OC), silt, clay and Fe and Al oxides, and directly proportional to pH and sand content in soils. In contrast, the calculated values of DT50 (days) of all the four pesticides in five soils positively correlated with OC, clay, silt and oxides of Fe and Al, whereas soil pH and sand content exhibited a negative correlation. The calculated values of environmental indices, GUS and LIX, for the selected pesticides indicate their potential portability into water bodies, affecting non-target organisms as well as food safety. The evaluation for human non-cancer risk of these pesticides, based on the calculated values of hazard quotient (HQ) and hazard index (HI), suggested that exposure of adults and children to soils, contaminated with 50% of initially applied concentrations, through ingestion, dermal and inhalation pathways might cause negligible to zero non-carcinogenic risks. The present data might help the stakeholders in applying recommended doses of pesticides in urban landscapes and regulatory bodies concerned in monitoring the overall environmental quality and implementing safeguard policies. Our study also clearly demonstrates the need for developing improved formulations and spraying technologies for pesticides to minimize human and environmental health risks.


Assuntos
Praguicidas , Poluentes do Solo , Adulto , Criança , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Solo/química , Argila , Areia , Poluentes do Solo/análise , Austrália , Medição de Risco , Monitoramento Ambiental
5.
Microb Ecol ; 86(1): 271-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610382

RESUMO

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil. Bacterial community composition analysis revealed that a naphthalene-degrading enrichment culture, MMNap, was dominated (84.90%) by a Gram-positive endospore-forming member of the genus Desulfotomaculum with minor contribution (8.60%) from a member of Clostridium. The pyrene-degrading enrichment, MMPyr, was dominated (97.40%) by a species of Desulfotomaculum. The sequences representing the Desulfotomaculum phylotypes shared 98.80% similarity to each other. After 150 days of incubation, MMNap degraded 195 µM naphthalene with simultaneous reduction of sulfate and accumulation of sulfide. Similarly, MMPyr degraded 114 µM pyrene during 180 days of incubation with nearly stochiometric sulfate consumption and sulfide accumulation. In both cases, the addition of sulfate reduction inhibitor, molybdate (20 mM), resulted in complete cessation of the substrate utilization and sulfate reduction that clearly indicated the major role of the sulfate-reducing Desulfotomaculum in biodegradation of the two PAHs. This study is the first report on anaerobic pyrene degradation by a matrix-free, strictly anaerobic, and sulfate-reducing enrichment culture.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Sulfatos , Anaerobiose , Sulfatos/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , Biodegradação Ambiental
7.
Environ Sci Process Impacts ; 24(12): 2217-2236, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36444949

RESUMO

Certain chemicals/materials that are contaminants of emerging concern (CECs) have been widely detected in water bodies and terrestrial systems worldwide while other CECs occur at undetectable concentrations. The primary sources of CECs in farmlands are agricultural inputs, such as wastewater, biosolids, sewage sludge, and agricultural mulching films. The percent increase in cropland area during 1950-2016 was 30 and the rise in land use for food crops during 1960-2018 was 100-500%, implying that there could be a significant CEC burden in farmlands in the future. In fact, the alarming concentrations (µg kg-1) of certain CECs such as PBDEs, PAEs, and PFOS that occur in farmlands are 383, 35 400 and 483, respectively. Also, metal nanoparticles are reported even at the mg kg-1 level. Chronic root accumulation followed by translocation of CECs into plants results in their detectable concentrations in the final plant produce. Thus, there is a continuous flow of CECs from farmlands to agricultural produce, causing a serious threat to the terrestrial food chain. Consequently, CECs find their way to the human body directly through CEC-laden plant produce or indirectly via the meat of grazing animals. Thus, human health could be at the most critical risk since several CECs have been shown to cause cancers, disruption of endocrine and cognitive systems, maternal-foetal transfer, neurotoxicity, and genotoxicity. Overall, this comprehensive review provides updated information on contamination of chemicals/materials of concern in farmlands globally, sources for their entry, uptake by crop plants, and their likely impact on the terrestrial food chain and human health.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Poluentes Químicos da Água/análise , Fazendas , Águas Residuárias , Esgotos
8.
Biodegradation ; 33(6): 575-591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35976498

RESUMO

Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Microbiologia do Solo , Benzo(a)pireno/metabolismo , Dimetilformamida/metabolismo , Solo , Pirenos/metabolismo , Fenantrenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Solventes/metabolismo
9.
RSC Adv ; 12(20): 12396-12415, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480371

RESUMO

Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to µmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.

10.
J Environ Manage ; 292: 112786, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030020

RESUMO

This novel study investigated the fate and distribution in soils, and potential exposure risk of glyphosate, an extensively used herbicide in urban landscapes. The rate-determining step of glyphosate sorption in urban soils involved chemisorption processes through exchange or sharing of electrons that followed the pseudo-second-order kinetics model. As evidenced by the Freundlich isotherm model, glyphosate gets partitioned into heterogeneous surfaces of soil organic matter (OM) and clay minerals, and then diffused into soil micropores. The principal component analysis revealed that soil OM (R2 = 0.873), oxides of Al (R2 = 0.361) and Fe (R2 = 0.126), and contents of clay (R2 = 0.061) and silt (R2 = 0.432) were positively correlated with the distribution coefficient (Kd) of glyphosate, while alkaline pH (R2 = -0.389) and sand content (R2 = -0.343) negatively correlated with the Kd values. Well-decomposed soil OM, consisting of C-H and CO functional groups, enhanced glyphosate sorption, whereas partially decomposed/undecomposed OM facilitated desorption process. Desorption of glyphosate was favoured in seven of nine selected soils due to adverse hysteresis effects (HI = 0.74-1.0). The higher values of leachability index (0.31-1.0) and groundwater ubiquity score (1.60-3.44) calculated for the urban soils indicated the great leaching potential of glyphosate from soil surface to waterbodies. Use of glyphosate on impermeable surfaces might directly contaminate water sources and affect potability of water, non-target biota, and food safety. The calculated values of cancer risk (10-8‒10-12) and hazard quotient (1.47 × 10-6‒4.12 × 10-6) suggested that the human exposure to glyphosate-contaminated soils through dermal, ingestion and inhalation pathways might cause negligible or no carcinogenic and non-carcinogenic risks to humans. Therefore, glyphosate should be applied judiciously at recommended concentrations in the urban landscapes, mainly on impervious surfaces, to minimize its health impacts in humans and environment.


Assuntos
Herbicidas , Poluentes do Solo , Adsorção , Saúde Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Humanos , Solo , Poluentes do Solo/análise , Glifosato
11.
J Agric Food Chem ; 68(47): 13497-13529, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170689

RESUMO

Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.


Assuntos
Bactérias/metabolismo , Cádmio/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Desenvolvimento Vegetal , Plantas/microbiologia , Rizosfera
12.
Bull Environ Contam Toxicol ; 105(3): 397-404, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32747993

RESUMO

Sensitivity of tropical freshwater microalgae (Mesotaenium sp., Chlorococcum sp. and Scenedesmus sp.) to environmentally relevant concentrations of hexavalent chromium (Cr6+) and cadmium (Cd2+) was compared individually in three growth media viz. Bold's Basal Medium (BBM), Test Medium 1 (TM1) and Test Medium 2 (TM2) based on fluorescence reduction. Free metal content of growth media was determined by Visual MINTEQ (version 3.1). After 24 h, relative fluorescence of microalgae in the three media decreased with increased metal concentration showing a concentration dependent graded toxicity response. All microalgae were more sensitive to the metals when grown in TM1, when compared, more sensitive to Cr6+ than Cd2+. Metal speciation indicated that TM1 and TM2 media have higher percentage of bioavailable Cd2+ than BBM, and chromium was present mainly as CrO42- and HCrO4-. The results suggest that the TM1 medium is more suitable under short term exposure of microalgae to metals in environmental monitoring.


Assuntos
Cádmio/toxicidade , Cromo/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cádmio/análise , Cromo/análise , Meios de Cultura , Monitoramento Ambiental/métodos , Água Doce , Scenedesmus , Poluentes Químicos da Água/análise
13.
ACS Omega ; 5(12): 6888-6894, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258924

RESUMO

Sustainable resource recovery is the key to manage the overburden of various waste entities of mining practices. The present study demonstrates for the first time a novel approach for iron recovery and biodiesel yield from two acid-adapted microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, grown in synthetic acid mine drainage (SAMD). Virtually, there was no difference in the growth of the strain MAS3 both in Bold's basal medium (control) and SAMD. Using the IC50 level (200 mg L-1) and a lower concentration (50 mg L-1) of iron in SAMD, the cell granularity, exopolysaccharide (EPS) secretion, iron recovery, and biodiesel were assessed in both the strains. Both cell granularity and accumulation of EPS were significantly altered under metal stress in SAMD, resulting in an increase in total accumulation of iron. Growth of the microalgal strains in SAMD yielded 12-20% biodiesel, with no traces of heavy metals, from the biomass. The entire amount of iron, accumulated intracellularly, was recovered in the residual biomass. Our results on the ability of the acid-adapted microalgal strains in iron recovery and yield of biodiesel when grown in SAMD indicate that they could be the potential candidates for use in bioremediation of extreme habitats like AMD.

14.
Environ Pollut ; 263(Pt A): 114372, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203845

RESUMO

Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.


Assuntos
Glicina , Herbicidas , Agricultura , Produtos Agrícolas , Glicina/análogos & derivados , Humanos , Glifosato
15.
Sci Total Environ ; 720: 137645, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146410

RESUMO

In the recent decades, Cd burden in cocoa-based products threatened global food safety, human health and the future of chocolateries. Increased Cd bioavailability is an acute problem in cacao-based horticulture. Poverty, poor maintenance, unjustified traditional farming, and paucity of knowledge on Cd-binding propensity in cacao discourage the application of risk-mitigation measures. Progressive accumulation of Cd, with a half-life of 10-30 years, in the human body even at ultra-trace levels may lead to serious health complications. If Cd accumulates in the food chain through cocoa products, consequences in children, who are the primary consumers of chocolates, include morbidity and mortality that may result in a significant demographic transition by the year 2050. Developing cacao clones with an innate capability of taking up low Cd levels from soils, and site-specific Cd-cacao research might contribute to limiting the trophic transfer of Cd. This review highlights the possible routes for Cd uptake in cacao plants and discusses the measures to rescue the chocolateries from Cd pollution to promote "healthy" cacao farming. The potential human health risks of chocolate-laden Cd and mitigation strategies to minimize Cd burden in the human body are also presented. The challenges and prospects in Cd-cacao research are discussed as well.


Assuntos
Cacau , Cádmio , Humanos , Solo , Poluentes do Solo
16.
Sci Total Environ ; 711: 134612, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810707

RESUMO

Pesticides play a pivotal role in controlling pests and disease infestations not only in urban agriculture but also in non-agricultural settings. Several pesticides like herbicides, insecticides, fungicides, rodenticides, etc. are applied unintentionally at higher concentrations even in small urban areas such as lawns, gardens and impermeable surfaces. Consequent to their indiscriminate use, both extensively and intensively, in the urban areas, contamination of pesticides poses a serious threat to the environment, living organisms and food safety. Although the fate and ecological effects of pesticides and their residues have been thoroughly understood in agricultural soils, information available in the literature on the impact of these contaminants in the urban environment is very limited and fragmentary. In fact, the fate and behaviour of pesticide residues in the urban environment are distinct from those in other ecosystems since the soils in urban areas greatly vary in their physico-chemical properties. Development of sustainable and eco-friendly approaches for remediation of even urban soils contaminated with pesticides is therefore greatly warranted. Thus, the present critical review is the first single source that provides updated knowledge on the sources, nature and extent of pesticide pollution in the urban environment, and the ecological and human health effects of pesticides and their residues. The potential of nano-encapsulation of pesticides for their application in urban settings has also been discussed.

17.
Anal Chim Acta ; 1077: 191-199, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31307709

RESUMO

Recently, microplastics (MP) have emerged as global contaminants of serious concern to human and ecological health. However, identification and visualisation of MP are still a challenge, whether from wastewater, oceans, sediment or soil. Particularly when MP are mapped to visualise their distribution, the background signal from sediment and soil might be high and shield the MP signal from the analysis. Raman has recently received increasing attention, as the complementary spectrum of infrared (IR), because it can overcome the drawbacks of IR analysis including water interference, low lateral resolution and a complex spectrum. Here we show that Raman can identify and visualise MP from a soil/sand background, with almost no sample preparation, no dye, no destruction of the sample and no interference from water/organic matter/fluorescence background signals as well. By mapping image via their characteristic and fingerprint peaks, MP including polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP) can be individually identified and visualised. The lateral resolution along the focal plane is 1 µm/pixel to catch small MP down to 1 µm.

18.
Heliyon ; 5(5): e01750, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193342

RESUMO

In this study, a novel form of zero valent iron nanoparticle (GMP-nZVI) was successfully synthesized using mango peel extracts. Iron on the surface of the synthesized particle was negligible. Surface structure and compositional analysis was carried out using XPS and FTIR whereby the characteristic feature of the analysis highlighted the role of few organic compounds in the synthesis of GMP-nZVI. Depth profiling of GMP-nZVI by XPS indicated increasing intensity of Fe0 while the portion of Fe+2/Fe+3 and the dominant species which were on the surface (i.e. C and O) were decreasing. The structural form of GMP-nZVI has a layer of polyphenol followed by the oxides and hydroxides of iron onto the metallic iron which has a shell structure of 'Fe+3/Fe+2-polyphenol' complex islands on the core metallic iron (graphical abstract). The use of mango peel in the synthesis is a low cost approach and economically viable which also provides new insight of waste recycling and nanoremediation.

19.
Bioresour Technol ; 281: 469-473, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30850256

RESUMO

Two acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, originally isolated from non-acidophilic environment, were tested for their ability to withstand higher concentrations of an invasive heavy metal, cadmium (Cd), at an acidic pH of 3.5 and produce biomass rich in biodiesel. The growth analysis, in terms of chlorophyll, revealed that strain MAS1 was tolerant even to 20 mg L-1 of Cd while strain MAS3 could withstand only up to 5 mg L-1. When grown in the presence of 2 mg L-1, a concentration which is 400-fold higher than that usually occurs in the environment, the microalgal strains accumulated >58% of Cd from culture medium at pH 3.5. FTIR analysis of Cd-laden biomass indicated production of significant amounts of biodiesel rich in fatty acid esters. This is the first study that demonstrates the capability of acid-tolerant microalgae to grow well and remove Cd at acidic pH.


Assuntos
Biocombustíveis , Biomassa , Cádmio/farmacologia , Clorófitas/metabolismo , Microalgas/metabolismo , Clorófitas/efeitos dos fármacos , Meios de Cultura , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/efeitos dos fármacos
20.
Sci Total Environ ; 654: 177-189, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445319

RESUMO

Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.


Assuntos
Resistência Microbiana a Medicamentos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Microbiota/efeitos dos fármacos , Praguicidas/toxicidade , Biotransformação , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Resistência Microbiana a Medicamentos/genética , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Microbiota/genética , Microbiota/fisiologia , Praguicidas/química , Praguicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA