Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Am Soc Mass Spectrom ; 35(3): 487-497, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329320

RESUMO

Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.


Assuntos
Peptídeo Hidrolases , Espectrometria de Massas em Tandem , Humanos , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Colagenases , Biomarcadores
2.
J Proteome Res ; 23(4): 1131-1143, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417823

RESUMO

Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.


Assuntos
Simulação por Computador , Análise de Variância
3.
J Proteome Res ; 23(2): 786-796, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38206822

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.


Assuntos
Dieta Ocidental , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Polissacarídeos/química , Glicosilação
4.
Sci Rep ; 14(1): 489, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177192

RESUMO

N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.


Assuntos
Processamento de Proteína Pós-Traducional , Sarcoma , Masculino , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicosilação , Polissacarídeos/metabolismo
5.
Anal Bioanal Chem ; 415(28): 7011-7024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843548

RESUMO

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.


Assuntos
Anticorpos , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/análise , Peptídeos/análise , Colágeno , Lasers
6.
Cureus ; 15(8): e43764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600430

RESUMO

Intravenous leiomyoma is a rare condition that occurs when there is a vascular invasion of a pre-existing uterine leiomyoma. The tumor can metastasize to structures such as the heart and lungs. We discuss a case of metastasis to the heart resulting in severe tricuspid regurgitation. Surgical intervention is the primary modality; usually a staged approach involving cardiac surgery along with abdominal and/or pelvic surgery. We want to highlight the importance of fully investigating right-sided cardiac masses. While there are common etiologies for these masses, one must maintain a high degree of suspicion for an intravenous leiomyoma, especially if a female has certain risk factors such as a prior history of fibroids or a hysterectomy. We also stress the importance of a multi-disciplinary team approach when providing care to these patients, along with reviewing all modalities of imaging.

7.
bioRxiv ; 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461579

RESUMO

Motivation: Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or tumor microenvironment (TME). Exploring the potential variations in the spatial co-occurrence or co-localization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. Results: We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process (PPP) and functional analysis of variance (FANOVA). Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered in such a context due to the complex nature of the data-collection procedure. We demonstrate the superior statistical power and robustness of the method in comparison to existing approaches through realistic simulation studies. Furthermore, we apply the method to three real datasets on different diseases collected using different imaging platforms. In particular, one of these datasets reveals novel insights into the spatial characteristics of various types of precursor lesions associated with colorectal cancer. Availability: The associated R package can be found here, https://github.com/sealx017/SpaceANOVA.

8.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
9.
Braz. J. Anesth. (Impr.) ; 73(3): 354-355, May-June 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1439604
10.
Cancer Res Commun ; 3(3): 383-394, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890858

RESUMO

There is an urgent need for the identification of reliable prognostic biomarkers for patients with intrahepatic cholangiocarcinoma (iCCA) and alterations in N-glycosylation have demonstrated an immense potential to be used as diagnostic strategies for many cancers, including hepatocellular carcinoma (HCC). N-glycosylation is one of the most common post-translational modifications known to be altered based on the status of the cell. N-glycan structures on glycoproteins can be modified based on the addition or removal of specific N-glycan residues, some of which have been linked to liver diseases. However, little is known concerning the N-glycan alterations that are associated with iCCA. We characterized the N-glycan modifications quantitatively and qualitatively in three cohorts, consisting of two tissue cohorts: a discovery cohort (n = 104 cases) and a validation cohort (n = 75), and one independent serum cohort consisting of patients with iCCA, HCC, or benign chronic liver disease (n = 67). N-glycan analysis in situ was correlated to tumor regions annotated on histopathology and revealed that bisected fucosylated N-glycan structures were specific to iCCA tumor regions. These same N-glycan modifications were significantly upregulated in iCCA tissue and serum relative to HCC and bile duct disease, including primary sclerosing cholangitis (PSC) (P < 0.0001). N-glycan modifications identified in iCCA tissue and serum were used to generate an algorithm that could be used as a biomarker of iCCA. We demonstrate that this biomarker algorithm quadrupled the sensitivity (at 90% specificity) of iCCA detection as compared with carbohydrate antigen 19-9, the current "gold standard" biomarker of CCA. Significance: This work elucidates the N-glycan alterations that occur directly in iCCA tissue and utilizes this information to discover serum biomarkers that can be used for the noninvasive detection of iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias dos Ductos Biliares/diagnóstico , Colangiocarcinoma/diagnóstico , Biomarcadores , Ductos Biliares Intra-Hepáticos/patologia
11.
Cell Rep ; 42(4): 112314, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000627

RESUMO

Elucidating the mechanisms of resistance to immunotherapy and developing strategies to improve its efficacy are challenging goals. Bioinformatics analysis demonstrates that high CDK6 expression in melanoma is associated with poor progression-free survival of patients receiving single-agent immunotherapy. Depletion of CDK6 or cyclin D3 (but not of CDK4, cyclin D1, or D2) in cells of the tumor microenvironment inhibits tumor growth. CDK6 depletion reshapes the tumor immune microenvironment, and the host anti-tumor effect depends on cyclin D3/CDK6-expressing CD8+ and CD4+ T cells. This occurs by CDK6 phosphorylating and increasing the activities of PTP1B and T cell protein tyrosine phosphatase (TCPTP), which, in turn, decreases tyrosine phosphorylation of CD3ζ, reducing the signal transduction for T cell activation. Administration of a PTP1B and TCPTP inhibitor prove more efficacious than using a CDK6 degrader in enhancing T cell-mediated immunotherapy. Targeting protein tyrosine phosphatases (PTPs) might be an effective strategy for cancer patients who resist immunotherapy treatment.


Assuntos
Quinase 6 Dependente de Ciclina , Neoplasias , Humanos , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Transdução de Sinais , Fosforilação , Imunoterapia , Quinase 4 Dependente de Ciclina/metabolismo , Microambiente Tumoral
12.
Adv Cancer Res ; 157: 57-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36725113

RESUMO

The development of robust cancer biomarkers is the most effective way to improve overall survival, as early detection and treatment leads to significantly better clinical outcomes. Many of the cancer biomarkers that have been identified and are clinically utilized are glycoproteins, oftentimes a specific glycoform. Aberrant glycosylation is a common theme in cancer, with dysregulated glycosylation driving tumor initiation and metastasis, and abnormal glycosylation can be detection both on the tissue surface and in serum. However, most cancer types are heterogeneous in regard to tumor genomics, and this heterogeneity extends to cancer glycomics. This limits the sensitivity of standalone glycan-based biomarkers, which has slowed their implementation clinically. However, if targeted biomarker development can take into account genomic tumor information, the development of complementary biomarkers that target unique cancer subgroups can be accomplished. This idea suggests the need for algorithm-based cancer biomarkers, which can utilize multiple biomarkers along with relevant demographic information. This concept has already been established in the detection of hepatocellular carcinoma with the GALAD score, and an algorithm-based approach would likely be effective in improving biomarker sensitivity for additional cancer types. In order to increase cancer diagnostic biomarker sensitivity, there must be more targeted biomarker development that considers tumor genomic, proteomic, metabolomic, and clinical data while identifying tumor biomarkers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/genética , Proteômica , Glicoproteínas , Biomarcadores , Glicômica , Polissacarídeos
14.
Front Pharmacol ; 14: 1337319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273829

RESUMO

Colorectal cancer (CRC) stands as a leading cause of death worldwide, often arising from specific genetic mutations, progressing from pre-cancerous adenomas to adenocarcinomas. Early detection through regular screening can result in a 90% 5-year survival rate for patients. However, unfortunately, only a fraction of CRC cases are identified at pre-invasive stages, allowing progression to occur silently over 10-15 years. The intricate interplay between the immune system and tumor cells within the tumor microenvironment plays a pivotal role in the progression of CRC. Immune cell clusters can either inhibit or facilitate tumor initiation, growth, and metastasis. To gain a better understanding of this relationship, we conducted N-glycomic profiling using matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI-MSI). We detected nearly 100 N-glycan species across all samples, revealing a shift in N-glycome profiles from normal to cancerous tissues, marked by a decrease in high mannose N-glycans. Further analysis of precancerous to invasive carcinomas showed an increase in pauci-mannose biantennary, and tetraantennary N-glycans with disease progression. Moreover, a distinct stratification in the N-glycome profile was observed between non-mucinous and mucinous CRC tissues, driven by pauci-mannose, high mannose, and bisecting N-glycans. Notably, we identified immune clusters of CD20+ B cells and CD3/CD44+ T cells distinctive and predictive with signature profiles of bisecting and branched N-glycans. These spatial N-glycan profiles offer potential biomarkers and therapeutic targets throughout the progression of CRC.

15.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497452

RESUMO

We have previously identified alterations in glycosylation on serum proteins from patients with HCC and developed plate-based assays using lectins to detect the change in glycosylation. However, heterophilic antibodies, which increase with non-malignant liver disease, compromised these assays. To address this, we developed a method of polyethylene glycol (PEG) precipitation that removed the contaminating IgG and IgM but allowed for the lectin detection of the relevant glycoprotein. We found that this PEG-precipitated material itself could differentiate between cirrhosis and HCC. In the analysis of three training cohorts and one validation cohort, consisting of 571 patients, PEG-IgG had AUC values that ranged from 0.713 to 0.810. In the validation cohort, which contained samples from patients at a time of 1-6 months prior to HCC detection or 7+ months prior to detection, the AUC of this marker remained consistent (0.813 and 0.846, respectively). When this marker was incorporated into a biomarker algorithm that also consisted of AFP and fucosylated kininogen, the AUROC increased to 0.816-0.883 in the training cohort and was 0.909 in the external validation cohort. Biomarker performance was also examined though the analysis of partial ROC curves, at false positive values less than 10% (90-ROC), ≤20% (80-ROC) or ≤30% (70-ROC), which highlighted the algorithm's improvement over the individual markers at clinically relevant specificity values.

16.
Sci Rep ; 12(1): 20801, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460712

RESUMO

While mammograms are the standard tool for breast cancer screening, there remains challenges for mammography to effectively distinguish benign lesions from breast cancers, leading to many unnecessary biopsy procedures. A blood-based biomarker could provide a minimally invasive supplemental assay to increase the specificity of breast cancer screening. Serum N-glycosylation alterations have associations with many cancers and several of the clinical characteristics of breast cancer. The current study utilized a high-throughput mass spectrometry workflow to identify serum N-glycans with differences in intensities between patients that had a benign lesion from patients with breast cancer. The overall N-glycan profiles of the two patient groups had no differences, but there were several individual N-glycans with significant differences in intensities between patients with benign lesions and ductal carcinoma in situ (DCIS). Many N-glycans had strong associations with age and/or body mass index, but there were several of these associations that differed between the patients with benign lesions and breast cancer. Accordingly, the samples were stratified by the patient's age and body mass index, and N-glycans with significant differences between these subsets were identified. For women aged 50-74 with a body mass index of 18.5-24.9, a model including the intensities of two N-glycans, 1850.666 m/z and 2163.743 m/z, age, and BMI were able to clearly distinguish the breast cancer patients from the patients with benign lesions with an AUROC of 0.899 and an optimal cutoff with 82% sensitivity and 84% specificity. This study indicates that serum N-glycan profiling is a promising approach for providing clarity for breast cancer screening, especially within the subset of healthy weight women in the age group recommended for mammograms.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Índice de Massa Corporal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Mamografia , Polissacarídeos
17.
J Card Surg ; 37(12): 5513-5516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378915

RESUMO

Porcelain aorta with extensive calcification of the ascending aorta complicates cardiac surgery and increases perioperative risk. Aortic cannulation and cross-clamping in these patients increase the risk of serious complications including perioperative embolic stroke. Although different techniques have been proposed, surgery in these patients remains a challenge. We present the clinical implications of the porcelain aorta and surgical strategies involving axillary arterial cannulation and endoaortic balloon to allow for the institution of cardiopulmonary bypass and cardioplegic arrest during surgery. The surgery included a redo sternotomy with bioprosthetic mitral valve replacement, tricuspid valve repair with an annuloplasty, and closure of the left atrial appendage. In appropriately selected patients, endoaortic balloon occlusion was a valuable tool to facilitate the safe conduct of an operation. Careful preoperative evaluation and planning by a multidisciplinary team are essential in these cases.


Assuntos
Oclusão com Balão , Procedimentos Cirúrgicos Cardíacos , Humanos , Porcelana Dentária , Resultado do Tratamento , Procedimentos Cirúrgicos Cardíacos/métodos , Aorta/cirurgia , Cateterismo , Valva Mitral/cirurgia
18.
J Clin Anesth ; 83: 110980, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219977

RESUMO

STUDY OBJECTIVE: Obesity, defined by the World Health Organization as body mass index (BMI) ≥ 30.0 kg/m2, is associated with adverse outcomes and challenges during surgery. Difficulties during endotracheal intubation, occur in 3-8% of procedures and are among the principal causes of anesthetic-related morbidity and mortality. Endotracheal intubation can be challenging in obese patients due to an array of anatomic and physiologic factors. Double lumen tubes (DLTs), the most commonly used airway technique to facilitate anatomic isolation of the lungs for one lung ventilation. However, DLTs can be difficult to properly position and are also more likely to cause airway injuries and bleeding when compared to conventional single lumen tubes. We investigated the association between BMI and difficult tracheal DLT intubation. DESIGN: Retrospective cohort study. SETTING: Operating room. PATIENTS: We analyzed electronic records of adults having cardiac and thoracic surgery requiring general anesthesia and endotracheal intubation with DLT at the Cleveland Clinic between 2008 and 2021. MEASUREMENTS: BMI, preoperative airway abnormalities and difficult intubation, defined as more than one intubation attempt, was assessed using multivariable logistic regression. MAIN RESULTS: Among 8641 analyzed anesthetics requiring DLT, 1459 (17%) were difficult intubations. After adjusting for confounders, each 5 kg/m2 increase in BMI was associated with a marginal increase of difficult intubation, odds ratio (OR) 1.06 (95% Confidence Interval [CI]: 1.002, 1.11; P = 0.040). Difficult intubation was not associated with airway abnormalities, estimated OR 0.85 (95% CI: 0.62, 1.17; P = 0.321). There was no interaction between known airway abnormalities and BMI (P = 0.894). CONCLUSIONS: Difficult intubations with DLT remain common, but BMI is a weak predictor thereof. For example, an increase in BMI from 20 to 40 kg/m2 corresponds to an increase in average absolute risk for difficult intubation from 16 to 19%, which probably is not clinically meaningful.


Assuntos
Intubação Intratraqueal , Ventilação Monopulmonar , Adulto , Humanos , Índice de Massa Corporal , Estudos Retrospectivos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Ventilação Monopulmonar/métodos , Obesidade/complicações , Pulmão
19.
J Card Surg ; 37(12): 5451-5454, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251267

RESUMO

Redo cardiac surgery can present a unique set of challenges even to the experienced surgeon. Although outcomes have steadily improved in the modern era; if an intraoperative adverse event occurs, there is a 5% incidence of mortality and 19% incidence of myocardial infarction, stroke or death. Overall, the modern incidence of mortality at reoperation varies but be segregated into low and higher risk cohorts depending on the planning computed tomography imaging and risk to substernal structures on re-entry. Patients with ascending aortic or root pseudoaneurysms represent a particularly difficult subset of high-risk patients requiring reoperative cardiac surgery due to the danger of exsanguination and air embolization. The gold standard for management of such cases remains the use of deep hypothermic circulatory arrest (DHCA) to achieve safe re-entry in such cases however this can result in unpredictable DHCA duration depending on the degree of pericardial adhesions. We report a case of aortic pseudoaneurysm in a patient with patent coronary grafts managed using an endoballoon precisely positioned relative to the proximal anastomoses resulting in a safe surgical re-entry and shorter DHCA time.


Assuntos
Falso Aneurisma , Procedimentos Cirúrgicos Cardíacos , Humanos , Falso Aneurisma/etiologia , Falso Aneurisma/cirurgia , Resultado do Tratamento , Aorta/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Coração , Estudos Retrospectivos , Reoperação
20.
Glycobiology ; 32(10): 855-870, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35925813

RESUMO

Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve the understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hamper their use in research and clinical application. Mass spectrometry measures of 50 N-glycans on 7 serum proteins in liver disease were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized United States Food and Drug Administration-supported BioCompute Object. Using the biomarker data model allows the capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers; it can integrate N-glycan biomarker data with multi-source biomedical data and can foster discovery and insight within a unified data framework for glycan biomarker representation, thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Glicômica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA