RESUMO
INTRODUCTION: Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS: We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS: We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION: The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.
RESUMO
The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.
Assuntos
Benchmarking , Neoplasias da Mama/genética , Análise Mutacional de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento Completo do Genoma/normas , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Células Germinativas , Humanos , Mutação , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFß antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFß inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFß-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFß inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFß inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFß inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFß inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Células Estromais/imunologia , Microambiente Tumoral , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Terapia Combinada , Desoxicitidina/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
Comparing diverse single-cell RNA sequencing (scRNA-seq) datasets generated by different technologies and in different laboratories remains a major challenge. Here we address the need for guidance in choosing algorithms leading to accurate biological interpretations of varied data types acquired with different platforms. Using two well-characterized cellular reference samples (breast cancer cells and B cells), captured either separately or in mixtures, we compared different scRNA-seq platforms and several preprocessing, normalization and batch-effect correction methods at multiple centers. Although preprocessing and normalization contributed to variability in gene detection and cell classification, batch-effect correction was by far the most important factor in correctly classifying the cells. Moreover, scRNA-seq dataset characteristics (for example, sample and cellular heterogeneity and platform used) were critical in determining the optimal bioinformatic method. However, reproducibility across centers and platforms was high when appropriate bioinformatic methods were applied. Our findings offer practical guidance for optimizing platform and software selection when designing an scRNA-seq study.
Assuntos
Benchmarking , Análise de Sequência de RNA/normas , Análise de Célula Única/normas , Algoritmos , Linfócitos B , Neoplasias da Mama , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodosRESUMO
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Assuntos
Lectinas de Ligação a Manose , Macrófagos Associados a Tumor , Animais , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Lectinas Tipo C , Receptor de Manose , Camundongos , Receptores de Superfície CelularRESUMO
Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite evidence for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional diversity limits our ability to harness their activity. Here, we use single-cell mRNA sequencing to analyze the response of tumor-specific CD4+ TILs and draining lymph node (dLN) T cells. Computational approaches to characterize subpopulations identify TIL transcriptomic patterns strikingly distinct from acute and chronic anti-viral responses and dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, the dLN response includes T follicular helper (Tfh) cells but lacks Th1 cells. We identify a type I interferon-driven signature in Th1-like TILs and show that it is found in human cancers, in which it is negatively associated with response to checkpoint therapy. Our study provides a proof-of-concept methodology to characterize tumor-specific CD4+ T cell effector programs. Targeting these programs should help improve immunotherapy strategies.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias/imunologia , Transcriptoma/imunologia , Vírus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Interferon Tipo I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Microambiente Tumoral/imunologiaRESUMO
Cellular diversity in tumors is a key factor for therapeutic failures and lethal outcomes of solid malignancies. Here, we determined the single-cell transcriptomic landscape of liver cancer biospecimens from 19 patients. We found varying degrees of heterogeneity in malignant cells within and between tumors and diverse landscapes of tumor microenvironment (TME). Strikingly, tumors with higher transcriptomic diversity were associated with patient's worse overall survival. We found a link between hypoxia-dependent vascular endothelial growth factor expression in tumor diversity and TME polarization. Moreover, T cells from higher heterogeneous tumors showed lower cytolytic activities. Consistent results were found using bulk genomic and transcriptomic profiles of 765 liver tumors. Our results offer insight into the diverse ecosystem of liver cancer and its impact on patient prognosis.
Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/cirurgia , Biópsia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Variação Genética , Hepatectomia , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , RNA-Seq , Análise de Célula Única , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Formalin-fixed paraffin-embedded (FFPE) tissues are among the most widely available clinical specimens. Their potential utility as a source of RNA for transcriptome studies would greatly enhance population-based cancer studies. Although preliminary studies suggest FFPE tissue may be used for RNA sequencing, the effect of storage time on these specimens needs to be determined. We conducted this study to determine whether RNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries was present in sufficient quantity and quality for RNA-Seq analysis. FFPE tissues, stored from 7 to 32 years, were obtained from three SEER sites. RNA was extracted, quantified, quality assessed, and subjected to RNA-Seq (a whole transcriptome sequencing technology). FFPE specimens stored for longer periods of time had poorer RNA sample quality as indicated by negative correlations between specimen storage time and fragment distribution values (DV). In addition, sample contamination was a common issue among the RNA, with 41 of 67 samples having 5% to 48% bacterial contamination. However, regardless of specimen storage time and bacterial contamination, 60% of the samples yielded data that enabled gene expression quantification, identifying more than 10,000 genes, with the correlations among most biological replicates above 0.7. This study demonstrates that FFPE high-grade ovarian serous adenocarcinomas specimens stored in repositories for up to 32 years and under varying storage conditions are a promising source of RNA for RNA-Seq. We also describe certain caveats to be considered when designing RNA-Seq studies using archived FFPE tissues.
Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/genética , RNA Neoplásico/genética , RNA-Seq/métodos , Feminino , Formaldeído , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Inclusão em Parafina/métodos , Programa de SEER , Fatores de Tempo , Fixação de Tecidos/métodosRESUMO
Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.
Assuntos
Linfócitos T CD4-Positivos/fisiologia , Subpopulações de Linfócitos T/fisiologia , Fatores de Transcrição/metabolismo , Animais , Antígenos Virais/imunologia , Diferenciação Celular , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Humanos , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Ligação Proteica , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/genética , TranscriptomaRESUMO
Thymocyte-expressed molecule involved in selection (Themis) has been shown to be important for T cell selection by setting the threshold for positive versus negative selection. Themis interacts with the protein tyrosine phosphatase (PTP) Src-homology domain containing phosphatase-1 (Shp1), a negative regulator of the T cell receptor (TCR) signaling cascade. However, how Themis regulates Shp1 is still not clear. Here, using a very sensitive phosphatase assay on ex vivo thymocytes, we have found that Themis enhances Shp1 phosphatase activity by increasing its phosphorylation. This positive regulation of Shp1 activity by Themis is found in thymocytes, but not in peripheral T cells. Shp1 activity is modulated by different affinity peptide MHC ligand binding in thymocytes. Themis is also associated with phosphatase activity, due to its constitutive interaction with Shp1. In the absence of Shp1 in thymocytes, Themis interacts with Shp2, which leads to almost normal thymic development in Shp1 conditional knockout (cKO) mice. Double deletion of both Themis and Shp1 leads to a thymic phenotype similar to that of Themis KO. These findings demonstrate unequivocally that Themis positively regulates Shp1 phosphatase activity in TCR-mediated signaling in developing thymocytes.
Assuntos
Diferenciação Celular , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Linfócitos T/enzimologia , Animais , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteínas/genética , Transdução de Sinais , Linfócitos T/citologia , Timócitos/citologia , Timócitos/enzimologiaRESUMO
Intratumor molecular heterogeneity of hepatocellular carcinoma is partly attributed to the presence of hepatic cancer stem cells (CSCs). Different CSC populations defined by various cell surface markers may contain different oncogenic drivers, posing a challenge in defining molecularly targeted therapeutics. We combined transcriptomic and functional analyses of hepatocellular carcinoma cells at the single-cell level to assess the degree of CSC heterogeneity. We provide evidence that hepatic CSCs at the single-cell level are phenotypically, functionally, and transcriptomically heterogeneous. We found that different CSC subpopulations contain distinct molecular signatures. Interestingly, distinct genes within different CSC subpopulations are independently associated with hepatocellular carcinoma prognosis, suggesting that a diverse hepatic CSC transcriptome affects intratumor heterogeneity and tumor progression. CONCLUSION: Our work provides unique perspectives into the biodiversity of CSC subpopulations, whose molecular heterogeneity further highlights their role in tumor heterogeneity, prognosis, and hepatic CSC therapy. (Hepatology 2018;68:127-140).
Assuntos
Carcinoma Hepatocelular/metabolismo , Heterogeneidade Genética , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Estudos de Viabilidade , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas/citologia , Fenótipo , Prognóstico , Análise de Célula ÚnicaRESUMO
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.
Assuntos
Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Espermatogênese/genética , Fatores de Transcrição/genética , Trifosfato de Adenosina/metabolismo , Animais , Cromatina/metabolismo , Reparo do DNA/genética , Drosophila/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo , Cultura Primária de Células , Fatores de Transcrição/biossínteseRESUMO
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK beta and alpha subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene beta and alpha regions were cloned and expressed as His(6)- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9beta possessed catalytic activity. Monoclonal antibodies against the recombinant beta protein confirmed that the PfPFK9 protein has beta and alpha domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.
Assuntos
Trifosfato de Adenosina/metabolismo , Glicólise/genética , Fosfofrutoquinase-1/metabolismo , Plasmodium falciparum/enzimologia , Animais , Humanos , Fosfofrutoquinase-1/genética , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Monoclonal antibodies (MAbs) specific for the P domain of the Plasmodium falciparum P0 phosphoriboprotein (PfP0) blocked the invasion of RBCs by P. falciparum. Vaccination with this P-domain peptide protected mice upon malaria parasite challenge. The absolute specificity of the MAbs and the PfP0 P peptide makes them potential protective malaria reagents.
Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Fosfoproteínas/química , Plasmodium falciparum/patogenicidade , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos , Eritrócitos/parasitologia , Feminino , Humanos , Vacinas Antimaláricas/imunologia , Camundongos , Dados de Sequência Molecular , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/imunologia , Fosfoproteínas/administração & dosagem , Fosfoproteínas/imunologia , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas Ribossômicas/administração & dosagem , Proteínas Ribossômicas/imunologia , VacinaçãoRESUMO
Disease-free rainbow trout, Oncorhynchus mykiss (Walbaum),were inoculated with either the pathogenic Cryptobia salmositica Katz, 1951 or with the attenuated vaccine strain of the parasite. A number of vaccinated fish were then challenged at 6 weeks post-vaccination with pathogenic C. salmositica. Respiratory burst activity in stimulated macrophages (isolated from infected or vaccinated fish) was demonstrated by detection of released super-oxide anions, and the protein contents in these cells were also determined after the cells were digested. At 5 weeks after infection, the respiratory burst activity of macrophages from infected fish was significantly higher than those in naive and vaccinated fish. In addition, macrophages from vaccinated fish had greater activity than naive fish. Macrophage activity in vaccinated and challenged fish was comparable to that of infected fish. Antibodies were detected (ELISA) at 3 weeks after vaccination and at 5 weeks in infected fish. Complement-fixing antibodies (immune lysis test) were detected in infected fish at 5 weeks post-infection but were not detected in vaccinated fish unless they were challenged with the pathogen, in which case the titre rose rapidly.