Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38849971

RESUMO

BACKGROUND: Many studies have demonstrated the relationship between METTL3 protein expression and clinical outcomes in various cancers and elucidated the mechanism by which METTL3 disrupts the behavior of cancer cells. Here, we attempted to define the prognostic value of METTL3 protein in patients with cancer via systematic analysis and explored the potential effect of inhibiting METTL3 using its specific inhibitor. METHODS: We searched PubMed, Embase, and the Web of Science databases for studies that elucidated the prognostic value of METTL3 protein expression in all cancer types and then calculated the pooled hazard ratios with 95% confidence intervals for the overall survival (OS) of all cancer types and subgroups. Data from The Cancer Genome Atlas dataset were used to study METTL3 mRNA expression in cancers. Further, the effects of a METTL3-specific inhibitor were studied in cancer cells via the colony formation assay, the cell proliferation assay, and apoptosis detection. RESULTS: Meta-analysis of the 33 cohorts in 32 studies (3666 patients in total) revealed that higher METTL3 protein expression indicated poor OS in the majority of cancers. Bioinformatics analysis of METTL3 mRNA expression and cancer prognosis did not show the extremely prominent prognostic value of METTL3 mRNA. Nevertheless, the METTL3-specific inhibitor attenuated cell proliferation and cell cloning formation and promoted apoptosis. CONCLUSIONS: METTL3 protein expression is associated with poor prognosis in most cancer types and could be a biomarker for OS. Further, METTL3 inhibition might be a potential treatment strategy for cancers.

2.
Curr Med Sci ; 44(2): 309-327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517673

RESUMO

OBJECTIVE: Lung squamous cell carcinoma (LUSC) is associated with a low survival rate. Evidence suggests that bone morphogenetic proteins (BMPs) and their receptors (BMPRs) play crucial roles in tumorigenesis and progression. However, a comprehensive analysis of their role in LUSC is lacking. Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC. METHODS: The "R/Limma" package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC, using data from TCGA, GTEx, and GEO databases. Concurrently, the "survminer" packages were employed to investigate their prognostic value and correlation with clinical features in LUSC. The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis (WGCNA). LASSO analysis was conducted to construct a prognostic risk model for LUSC. Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC. Furthermore, based on the tumor immune estimation resource database and tumor-immune system interaction database, the role of the core gene in the tumor microenvironment of LUSC was explored. RESULTS: GDF10 had a significant correlation only with the pathological T stage of LUSC, and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC. A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes (HRASLS, HIST1H2BH, FLRT3, CHEK2, and ALPL) for LUSC. GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression. CONCLUSION: GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinogênese/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Pulmão , Microambiente Tumoral/genética , Fator 10 de Diferenciação de Crescimento
3.
Mol Med ; 30(1): 28, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383297

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. The sex differences in the occurrence and fatality rates of non-small cell lung cancer (NSCLC), along with its association with estrogen dependence, suggest that estrogen receptors (ERs) contribute to the development of NSCLC. However, the influence of G protein-coupled estrogen receptor (GPER1) on NSCLC remains to be determined. Escape from ferroptosis is one of the hallmarks of tumor discovered in recent years. In this context, the present study evaluated whether GPER1 promotes NSCLC progression by preventing ferroptosis, and the underlying mechanism through which GPER1 protects against ferroptosis was also explored. METHODS: The effects of GPER1 on the cytotoxicity of H2O2, the ferroptosis inducer RSL3, and Erastin were assessed using the CCK8 assay and plate cloning. Lipid peroxidation levels were measured based on the levels of MDA and BODIPY™581/591C11. GPER1 overexpression and knockdown were performed and G1 was used, and the expression of SCD1 and PI3K/AKT/mTOR signaling factors was measured. Immunofluorescence analysis and immunohistochemistry were performed on paired specimens to measure the correlation between the expression of GPER1 and SCD1 in NSCLC tissues. The effect of GPER1 on the cytotoxicity of cisplatin was measured in vitro using the CCK8 assay and in vivo using xenograft tumor models. RESULTS: GPER1 and G1 alleviated the cytotoxicity of H2O2, reduced sensitivity to RSL3, and impaired lipid peroxidation in NSCLC tissues. In addition, GPER1 and G1 promoted the protein and mRNA expression of SCD1 and the activation of PI3K/AKT/mTOR signaling. GPER1 and SCD1 expression were elevated and positively correlated in NSCLC tissues, and high GPER1 expression predicted a poor prognosis. GPER1 knockdown enhanced the antitumor activity of cisplatin in vitro and in vivo. CONCLUSION: GPER1 prevents ferroptosis in NSCLC by promoting the activation of PI3K/AKT/mTOR signaling, thereby inducing SCD1 expression. Therefore, treatments targeting GPER1 combined with cisplatin would exhibit better antitumor effects.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Feminino , Masculino , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cisplatino/farmacologia , Lipogênese , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estrogênios , Receptores de Estrogênio/metabolismo , Proteínas de Ligação ao GTP , Estearoil-CoA Dessaturase/metabolismo
4.
Cell Biosci ; 14(1): 10, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238831

RESUMO

BACKGROUND: METTL3 plays a significant role as a catalytic enzyme in mediating N6-methyladenosine (m6A) modification, and its importance in tumour progression has been extensively studied in recent years. However, the precise involvement of METTL3 in the regulation of translation in non-small cell lung cancer (NSCLC) remains unclear. RESULTS: Here we discovered by clinical investigation that METTL3 expression is correlated with NSCLC metastasis. Ablation of METTL3 in NSCLC cells inhibits invasion and metastasis in vitro and in vivo. Subsequently, through translatomics data mining and experimental validation, we demonstrated that METTL3 enhances the translation of aromatase (CYP19A1), a key enzyme in oestrogen synthesis, thereby promoting oestrogen production and mediating the invasion and metastasis of NSCLC. Mechanistically, METTL3 interacts with translation initiation factors and binds to CYP19A1 mRNA, thus enhancing the translation efficiency of CYP19A1 in an m6A-dependent manner. Pharmacological inhibition of METTL3 enzymatic activity or translation initiation factor eIF4E abolishes CYP19A1 protein synthesis. CONCLUSIONS: Our findings indicate the crucial role of METTL3-mediated translation regulation in NSCLC and reveal the significance of METTL3/eIF4E/CYP19A1 signaling as a promising therapeutic target for anti-metastatic strategies against NSCLC.

5.
Cancer Lett ; 582: 216587, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097136

RESUMO

Osimertinib resistance is regarded as a major obstacle limiting survival benefits for patients undergoing treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). However, the underlying mechanisms of acquired resistance remain unclear. In this study, we report that estrogen receptor ß (ERß) is highly expressed in osimertinib-resistant NSCLC and plays a pivotal role in promoting osimertinib resistance. We further identified ubiquitin-specific protease 7 (USP7) as a critical binding partner that deubiquitinates and upregulates ERß in NSCLC. ERß promotes osimertinib resistance by mitigating reactive oxygen species (ROS) accumulation. We found that ERß mechanistically suppresses peroxiredoxin 3 (PRDX3) SUMOylation and thus confers osimertinib resistance onto NSCLC. Furthermore, we provide evidence showing that depletion of ERß induces ROS accumulation and reverses osimertinib resistance in NSCLC both in vitro and in vivo. Thus, our results demonstrate that USP7-mediated ERß stabilization suppresses PRDX3 SUMOylation to mitigate ROS accumulation and promote osimertinib resistance, suggesting that targeting ERß may be an effective therapeutic strategy to overcome osimertinib resistance in NSCLC.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor beta de Estrogênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Peroxirredoxina III/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio , Sumoilação , Peptidase 7 Específica de Ubiquitina
6.
BMC Cancer ; 23(1): 1047, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907850

RESUMO

Lung adenocarcinoma (LUAD) is a common type of malignant tumor with poor prognosis and high mortality. In our previous studies, we found that estrogen is an important risk factor for LUAD, and different estrogen statuses can predict different prognoses. Therefore, in this study, we constructed a prognostic signature related to estrogen reactivity to determine the relationship between different estrogen reactivities and prognosis. We downloaded the LUAD dataset from The Cancer Genome Atlas (TCGA) database, calculated the estrogen reactivity of each sample, and divided them into a high-estrogen reactivity group and a low-estrogen reactivity group. The difference in overall survival between the groups was significant. We also analyzed the status of immune cell infiltration and immune checkpoint expression between the groups. We analyzed the differential gene expression between the groups and screened four key prognostic factors by the least absolute shrinkage and selection operator (LASSO) regression and univariable and multivariable Cox regression. Based on the four genes, a risk signature was established. To a certain extent, the receiver operating characteristic (ROC) curve showed the predictive ability of the risk signature, which was further verified using the GSE31210 dataset. We also determined the role of estrogen in LUAD using an orthotopic mouse model. Additionally, we developed a predictive nomogram combining the risk signature with other clinical characteristics. In conclusion, our four-gene prognostic signature based on estrogen reactivity had prognostic value and can provide new insights into the development of treatment strategies for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Prognóstico , Adenocarcinoma de Pulmão/genética , Nomogramas , Estrogênios/genética , Neoplasias Pulmonares/genética
7.
Int J Cancer ; 153(6): 1287-1299, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212571

RESUMO

In a previous study, our research group observed that estrogen promotes the metastasis of non-small cell lung cancer (NSCLC) through the estrogen receptor ß (ERß). Invadopodia are key structures involved in tumor metastasis. However, it is unclear whether ERß is involved in the promotion of NSCLC metastasis through invadopodia. In our study, we used scanning electron microscopy to observe the formation of invadopodia following the overexpression of ERß and treatment with E2. In vitro experiments using multiple NSCLC cell lines demonstrated that ERß can increase the formation of invadopodia and cell invasion. Mechanistic studies revealed that ERß can upregulate the expression of ICAM1 by directly binding to estrogen-responsive elements (EREs) located on the ICAM1 promoter, which in turn can enhance the phosphorylation of Src/cortactin. We also confirmed these findings in vivo using an orthotopic lung transplantation mouse model, which validated the results obtained from the in vitro experiments. Finally, we examined the expressions of ERß and ICAM1 using immunohistochemistry in both NSCLC tissue and paired metastatic lymph nodes. The results confirmed that ERß promotes the formation of invadopodia in NSCLC cells through the ICAM1/p-Src/p-Cortactin signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Podossomos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cortactina/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Podossomos/metabolismo , Podossomos/patologia , Transdução de Sinais
8.
Transl Cancer Res ; 12(2): 273-286, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915596

RESUMO

Background: Centromere proteins (CENPs) form a large protein family. Sixteen proteins in this family are positioned at the centromere throughout the cell cycle. The overexpression of CENPs is common in many cancers and predicts a poor prognosis. However, a comprehensive analysis of CENPs expression has not been conducted, and their clinical significance in lung adenocarcinoma (LUAD) is unclear. Methods: We investigated the expression differences of the CENP family in LUAD using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) cohorts. Kaplan-Meier curve survival analysis was performed to assess their independent prognostic values. We then tested 5 clinical LUAD specimens by quantitative real time polymerase chain reaction (qRT-PCR). The risk model was constructed with least absolute shrinkage and selection operator (LASSO). Cox regression analyses were carried out to determine independent prognostic indicators. Weighted gene coexpression network analysis (WGCNA) was employed to define the coexpression networks. Results: The messenger RNA (mRNA) expression of 15 differential CENP proteins was higher in LUAD than in normal lung tissues. Among them, 10 CENP proteins had significant prognostic value. The risk model comprising CENPF, CENPU, CENPM, CENPH, and CENPW showed a significant correlation [hazard ratio (HR) 1.75, 95% confidence interval (CI): 1.3-2.35; P=2e-04]. However, the prognostic accuracy was not strong [1-year survival: area under curve (AUC) 0.63; 3-year survival: AUC 0.62; 5-year survival: AUC 0.6]. The qRT-PCR results showed that the 5 CENPs were upregulated in LUAD tissues compared to in normal lung tissues. A total of 441 hub genes coexpressed with the 5 CENPs were identified. Conclusions: CENPF, CENPU, CENPM, CENPH, and CENPW have prognostic values and may be potential targets for LUAD treatment.

9.
Biomolecules ; 13(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830614

RESUMO

Aberrant translation, a characteristic feature of cancer, is regulated by the complex and sophisticated RNA binding proteins (RBPs) in the canonical translation machinery. N6-methyladenosine (m6A) modifications are the most abundant internal modifications in mRNAs mediated by methyltransferase-like 3 (METTL3). METTL3 is commonly aberrantly expressed in different tumors and affects the mRNA translation of many oncogenes or dysregulated tumor suppressor genes in a variety of ways. In this review, we discuss the critical roles of METTL3 in translation regulation and how METTL3 and m6A reader proteins in collaboration with RBPs within the canonical translation machinery promote aberrant translation in tumorigenesis, providing an overview of recent efforts aiming to 'translate' these results to the clinic.


Assuntos
Carcinogênese , Metiltransferases , Humanos , Metiltransferases/metabolismo , Carcinogênese/genética , Proliferação de Células
10.
Oncol Lett ; 25(2): 68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36644145

RESUMO

Esophageal cancer (ESCA) is a lethal malignancy and is associated with the alterations of various genes and epigenetic modifications. The protein dpy-30 homolog (DPY30) is a core member of histone H3K4 methylation catalase and its dysfunction is associated with the occurrence and development of cancer. Therefore, the present study investigated the role of DPY30 in ESCA and evaluated the association between the expression of DPY30, the clinicopathological characteristics of ESCA and the tumor immune microenvironment. It conducted a comprehensive analysis of DPY30 in patients with ESCA using The Cancer Genome Atlas (TCGA) database and clinical tissue microarray specimens of ESCA. Immunohistochemistry was performed to assess the expression levels of DPY30 in tissues. Receiver operating curve analysis, Kaplan-Meier survival analysis and Cox regression analysis were performed to identify the diagnostic and prognostic value of DPY30. Gene Set Enrichment Analysis, protein-protein interaction network and Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression data were used to screen DPY30-associated genes and evaluate the immune score of the TCGA samples. The results demonstrated that the expression of mRNA and protein levels of DPY30 were significantly upregulated in tumor tissues compared with normal tissue samples. The expression of DPY30 was closely associated with the poor prognosis of patients with ESCA. The present study also found that DPY30 expression and the pathological characteristics of ESCA were significantly correlated. Additionally, the expression of DPY30 demonstrated a significant positive correlation with various immune cells infiltration. The results suggested that DPY30 might influence tumor immune infiltration. In conclusion, the findings suggested that DPY30 might be a potential prognostic biomarker and an immunotherapeutic target in ESCA.

11.
Transl Cancer Res ; 11(11): 4000-4008, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523294

RESUMO

Background: Identification of the intersegmental plane (ISP) is the critical step in lung segmentectomy because of the complicated anatomic variations. Bronchial methylene blue staining was developed by our team in 2015 and is now commonly used at our center, it could rapidly and accurately identify the ISP. In this study, we aimed to compare bronchial methylene blue staining with the modified inflation-deflation method in terms of their perioperative characteristics and to present our experience of the methylene blue method. Methods: From June 2020 to September 2021, the data of 112 patients with pulmonary ground-glass nodules who underwent segmentectomy by video-assisted thoracoscopic surgery were retrospectively reviewed. Sixty-two patients underwent bronchial methylene blue staining, and 50 patients underwent the modified inflation-deflation method. Results: Both methods could accurately identify the ISP. The time taken to clearly display the ISP (82.94±28.08 vs. 868.20±145.89 seconds; P<0.001) and the surgical duration (131.69±32.05 vs. 146.08±28.11 minutes; P=0.014) were significantly shorter in the bronchial methylene blue staining group than in the modified inflation-deflation group. There were no significant differences between the two groups in the bleeding volume, drainage time, and length of postoperative hospital stay, as well as in most other perioperative characteristics. Conclusions: Compared with the modified inflation-deflation method, the bronchial methylene blue staining method can quickly display the ISP and shorten the surgical duration. This method is safe and feasible, can be widely applied during thoracoscopic anatomic segmentectomy.

12.
Front Immunol ; 13: 986447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544782

RESUMO

Immunotherapy can improve the survival of patients with advanced lung squamous cell carcinoma (LUSC). T cytotoxic cells are one of the main members of the immune microenvironment. Herein, we aimed to identify the roles of T-cell cytotoxic markers interleukin 18 (IL18) receptor 1 (IL18R1) in the LUSC progression using bioinformatics, clinical tissue specimen, and cell experiment. We assessed the association between the IL18R1 expression and immune infiltration and IL18R1-related competing RNA network. The IL18R1 expression was downregulated in the LUSC tissues. The IL18R1 expression downregulation was associated with diagnosis and short overall survival and disease-specific survival, and it was also an independent risk factor for dismal survival time in LUSC. IL18R1-related nomograms predicted the survival time of patients with LUSC. IL18R1 overexpression inhibited the proliferation, migration, and invasion of LUSC cells. The IL18R1 expression was significantly associated with the microenvironment (stromal, immune, and estimate scores), immune cells (such as the T cells, cytotoxic cells, CD8 T cells), and immune cell markers (such as the CD8A, PD-1, and CTLA4) in LUSC. AC091563.1 and RBPMS-AS1 downregulation was positively associated with the IL18R1 expression, negatively associated with the miR-128-3p expression, and associated with short disease-specific survival and progression in LUSC. In conclusion, IL18R1 was significantly downregulated and associated with the prognosis and immune microenvironment. IL18R1 overexpression inhibits the growth and migration of cancer cells in LUSC. Furthermore, AC091563.1 and RBPMS-AS1 might compete with IL18R1 to bind miR-128-3p for participating in LUSC progression. These results showed that IL18R1 is a biomarker for evaluating the prognosis of patients with LUSC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Humanos , Regulação para Baixo , Prognóstico , Complexo CD3 , Subunidade alfa de Receptor de Interleucina-18 , Neoplasias Pulmonares/genética , Proliferação de Células , Pulmão , MicroRNAs/genética , Microambiente Tumoral
13.
Curr Med Sci ; 41(6): 1231-1238, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34939145

RESUMO

OBJECTIVE: MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion (IR) injury. This study aimed to investigate the miRNA expression profiles in the early stages after lung transplantation (LT) and to study the involvement of the Toll-like receptor (TLR) signaling pathway in lung IR injury following LT. METHODS: We established the left LT model in mice and selected the miRNA-122 as a research target. The mice were injected with a miRNA-122-specific inhibitor, following which pathological changes in the lung tissue were studied using different lung injury indicators. In addition, we performed deep sequencing of transplanted lung tissues to identify differentially expressed (DE) miRNAs and their target genes. These target genes were used to further perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: A total of 12 DE miRNAs were selected, and 2476 target genes were identified. The GO enrichment analysis predicted 6063 terms, and the KEGG analysis predicted 1554 biological pathways. Compared with the control group, inhibiting the expression of miRNA-122 significantly reduced the lung injury and lung wet/dry ratio (P<0.05). In addition, the activity of myeloperoxidase and the expression levels of tumor necrosis factor-alpha and TLR2/4 were decreased (P<0.05); whereas the expression of interleukin-10 was increased (P<0.05). Furthermore, the inhibition of miRNA-122 suppressed the IR injury-induced activation of the TLR signaling pathway. CONCLUSION: Our findings showed the differential expression of several miRNAs in the early inflammatory response following LT. Of these, miRNA-122 promoted IR injury following LT, whereas its inhibition prevented IR injury in a TLR-dependent manner.


Assuntos
Transplante de Pulmão , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Lesão Pulmonar/prevenção & controle , Camundongos , MicroRNAs/genética , Traumatismo por Reperfusão/prevenção & controle
15.
Aging (Albany NY) ; 12(1): 138-155, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31901897

RESUMO

Lycorine is a powerful anti-cancer agent against various cancer cell lines with minor side effects. However, the detailed mechanisms of its effects in colorectal cancer (CRC) remain unclear. In this study, we investigated the function and mechanism of lycorine against CRC both in vitro and in vivo. Molecular docking modeling was used to identify potential inhibitory targets of lycorine in CRC. Cell viability was measured using the Cell Counting Kit-8 assay, and apoptosis was measured using flow cytometry. Autophagosomes were examined using transmission electron microscopy and confocal microscopy. HCT116-derived xenografts were constructed to analyze the effect of lycorine in CRC in vivo. Using the CDOCKER algorithm, we determined that lycorine has four interactions with the conserved domain of mitogen-activated protein kinase kinase 2 (MEK2). This prediction was further confirmed by the degradation of phosphorylated MEK2 and its downstream targets after lycorine treatment, and MEK2 overexpression abolished lycorine-induced autophagy-associated apoptosis. Additionally, we revealed that the combination of vemurafenib and lycorine had better effects in CRC models in vitro and in vivo than monotherapy. Our findings identified lycorine as an effective MEK2 inhibitor and suggested that the combination of lycorine and vemurafenib could be used to treat CRC.

16.
J Clin Lab Anal ; 34(1): e23027, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31489711

RESUMO

OBJECTIVE: The aim of this study was to explore the predictive value of carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and neuron-specific enolase (NSE) in the prediction of anaplastic lymphoma kinase (ALK) mutations in advance stage non-small cell lung cancer (NSCLC). SUBJECTS AND METHODS: A total of 482 cases with untreated lung adenocarcinoma were retrospectively reviewed. Finally, 72 patients with stage IV were enrolled because of intact data of the detection of ALK rearrangement and serum tumor markers, as well they have not received any previous anticancer therapy. We used the one-way ANOVA analysis, correlation analysis, and multiple logistic regression analysis to evaluate the relationship between the level of serum tumor markers and ALK mutations. RESULTS: Fifteen cases with ALK mutations and 57 cases without mutations were identified. The result of the one-way ANOVA analysis showed only CEA was significantly associated with ALK mutations (95% CI:39.05-148.88; P = .001). The area under the ROC curve (AUC) of CEA was 0.705 (95%CI:0.567-0.843; P = .015). However, no significant association was observed between CEA and ALK mutations though the result of correlation analysis (P = .069) and multivariate logistic regression analysis (OR = 0.988, 95% CI: 0.972-1.003, P = .111). CONCLUSIONS: In our study, we performed on the patients with stage IV lung adenocarcinoma in our region and found preoperative serum levels of SCCAg, CYRF21-1, and NSE not suitable for the detection of ALK mutation. Although we observed a significant association between CEA and ALK mutations; however, it was not strong enough to distinguish ALK status for the patients in our region.


Assuntos
Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/genética , Quinase do Linfoma Anaplásico/genética , Biomarcadores Tumorais/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Mutação/genética , Adenocarcinoma de Pulmão/enzimologia , Adulto , Idoso , China , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Curva ROC
17.
Am J Cancer Res ; 8(11): 2227-2237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555740

RESUMO

Adrenergic receptors (ARs), especially ß-ARs, are constitutively expressed in most mammalian cells and are associated with various malignancies including lung cancer. Epidemiologic studies have reported that activation of ß-AR signalling promotes the development and progression of lung cancer and that pharmacological interference by ß-AR blockers could partially reverse lung cancer progression. In this review, we mainly focus on the role of ß-ARs in lung cancer and then reveal the possible application of AR blockers in anti-tumour therapy for lung cancer.

18.
Cytokine Growth Factor Rev ; 44: 18-27, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30470512

RESUMO

The interleukin-(IL)-1 subfamily consists of IL-1α, IL-1ß, IL-1 receptor antagonist IL-1Ra and IL-33. These cytokines are the main members of the IL-1 family and have been widely recognized as having significant roles in pro-inflammatory and immunomodulatory actions. Mounting evidence has revealed that these cytokines also play key roles in the regulation of glycolysis, which is an important metabolic pathway in most organisms that provides energy. Dysregulation of glycolysis is associated with various diseases, including type 2 diabetes, rheumatoid arthritis (RA) and cancer. We reviewed studies addressing the important roles of IL-1 subfamily cytokines, with particular focus on their ability to regulate glycolysis in disease states. In this review, we summarize the potential roles of IL-1 subfamily members in glycolysis in disease states and address the underlying mechanisms. Furthermore, we discuss the potential of these cytokines as therapeutic targets in clinical applications to provide insight into possible therapeutic strategies for treatment, especially for cancers.


Assuntos
Glicólise , Interleucina-1/metabolismo , Subunidades Proteicas/metabolismo , Animais , Artrite Reumatoide/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA