Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 294: 121995, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36641813

RESUMO

Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.


Assuntos
Portadores de Fármacos , Nanopartículas , Transporte Biológico , Portadores de Fármacos/química , Células Epiteliais/metabolismo , Lactalbumina/metabolismo , Nanopartículas/química , Espaço Intracelular/metabolismo , Boca/metabolismo
2.
Biosens Bioelectron ; 200: 113902, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954570

RESUMO

Exosomes are regarded as a promising biomarker for the noninvasive diagnosis and treatment of diseases. The value of exosomes for medical research has promoted the search for a fast, efficient, and sensitive detection method. This study reported a sandwich-based evanescent wave fluorescent biosensor (S-EWFB) for exosome detection. A two-step strategy was implemented to take advantages of the simple binding of fluorescent probes with exosomes via the hydrophobic interaction between the cholesteryl and phospholipid bilayer membrane, as well as real-time detection on an evanescent wave liquid-solid interface based on CD63 aptamer-specific capture to form an exosome@fluorescence probe/aptamer sandwich structure. The one-to-many connection between exosomes and signal molecules and the aptamer-modified evanescent wave optical fiber detection platform reduced the detection limit of exosomes to 7.66 particles/mL, with a linear range of 47.5-4.75 × 106 particles/mL. The entire detection process was simple, rapid, and real-time and lasted about 1 h while requiring no separation and purification. Additionally, this platform showed excellent surface regeneration capability and exhibited good performance during the analysis of tumor and non-tumor-derived exosomes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Corantes Fluorescentes , Oligonucleotídeos , Fibras Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA