Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(12): 5698-5706, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37945526

RESUMO

The development of cell-penetrating polymers with endocytosis-independent cell uptake pathways has emerged as a prominent strategy to enhance the transfection efficiency. Inspired by the rigid α-helical structure that endows polypeptides with cell-penetrating ability, we propose that a rigid backbone can facilitate the corresponding polymer vector's performance in gene delivery by bypassing the difficult endosomal escape process. Meanwhile, the installation of aromatic domains, as a way to promote gene transfection efficiency, is employed through the construction of a poly(benzyl ether) (PBE)-based scaffold in this work. We demonstrate that the direct membrane translocation capability of the synthesized PBE contributes to its enhanced transfection performance and excellent biocompatibility profile, rendering the imidazolium-functionalized PBE scaffold with higher activity and biocompatibility. Molecular details of the PBE-lipid interaction are also revealed in molecular dynamics simulations, indicating the important roles of individual structural elements on the polymeric scaffold in the membrane penetration process.


Assuntos
Técnicas de Transferência de Genes , Polímeros , Terapia Genética , Transfecção , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA